mindspore.ops.count_nonzero
- mindspore.ops.count_nonzero(x, axis=(), keep_dims=False, dtype=mstype.int32)[source]
Count number of nonzero elements across axis of input tensor.
- Parameters
x (Tensor) – Input data is used to count non-zero numbers. With shape \((N, *)\) where \(*\) means, any number of additional dimensions.
axis (Union[int, tuple(int), list(int)], optional) – The dimensions to reduce. Default:
()
, reduce all dimensions.keep_dims (bool, optional) – Whether to maintain dimensions specified by axis. If true, keep these reduced dimensions and the length is 1. If false, don’t keep these dimensions. Default:
False
.dtype (Union[Number, mindspore.bool_], optional) – The data type of the output tensor. Default:
mstype.int32
.
- Returns
Tensor, number of nonzero element across axis specified by axis. The data type is specified by dtype.
- Raises
TypeError – If axis is not int, tuple or list.
ValueError – If any value in axis is not in range [-x.ndim, x.ndim).
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> from mindspore import Tensor, ops >>> import numpy as np >>> # case 1: each value specified. >>> x = Tensor(np.array([[0, 1, 0], [1, 1, 0]]).astype(np.float32)) >>> nonzero_num = ops.count_nonzero(x=x, axis=[0, 1], keep_dims=True, dtype=mindspore.int32) >>> print(nonzero_num) [[3]] >>> # case 2: all value is default. >>> nonzero_num = ops.count_nonzero(x=x) >>> print(nonzero_num) 3 >>> # case 3: axis value was specified 0. >>> nonzero_num = ops.count_nonzero(x=x, axis=[0,]) >>> print(nonzero_num) [1 2 0] >>> # case 4: axis value was specified 1. >>> nonzero_num = ops.count_nonzero(x=x, axis=[1,]) >>> print(nonzero_num) [1 2] >>> # case 5: keep_dims value was specified. >>> nonzero_num = ops.count_nonzero(x=x, keep_dims=True) >>> print(nonzero_num) [[3]] >>> # case 6: keep_dims and axis value was specified. >>> nonzero_num = ops.count_nonzero(x=x, axis=[0,], keep_dims=True) >>> print(nonzero_num) [[1 2 0]]