mindspore.ops.TensorScatterMin

View Source On Gitee
class mindspore.ops.TensorScatterMin[source]

By comparing the value at the position indicated by indices in input_x with the value in the updates, the value at the index will eventually be equal to the smallest one to create a new tensor.

Refer to mindspore.ops.tensor_scatter_min() for more details.

Inputs:
  • input_x (Tensor) - The target tensor. The dimension of input_x must be no less than indices.shape[-1].

  • indices (Tensor) - The index of input tensor whose data type is int32 or int64. The rank must be at least 2.

  • updates (Tensor) - The tensor to update the input tensor, has the same type as input, and updates.shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:].

Outputs:

Tensor, has the same shape and type as input_x.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32)
>>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32)
>>> # Next, demonstrate the approximate operation process of this operator:
>>> # 1, indices[0] = [0, 0], indices[1] = [0, 0]
>>> # 2, And input_x[0, 0] = -0.1
>>> # 3, So input_x[indices] = [-0.1, -0.1]
>>> # 4, Satisfy the above formula: input_x[indices].shape=(2) == updates.shape=(2)
>>> op = ops.TensorScatterMin()
>>> # 5, Perform the min operation for the first time:
>>> #      first_input_x = Min(input_x[0][0], updates[0]) = [[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]
>>> # 6, Perform the min operation for the second time:
>>> #      second_input_x = Min(input_x[0][0], updates[1]) = [[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]
>>> output = op(input_x, indices, updates)
>>> print(output)
[[ -0.1  0.3  3.6]
 [ 0.4  0.5 -3.2]]