mindspore.ops.KLDivLoss

View Source On Gitee
class mindspore.ops.KLDivLoss(reduction='mean')[source]

Computes the Kullback-Leibler divergence between the logits and the labels.

For tensors of the same shape \(x\) and \(target\), the updating formulas of KLDivLoss algorithm are as follows,

\[L(x, target) = target \cdot (\log target - x)\]

Then,

\[\begin{split}\ell(x, target) = \begin{cases} L(x, target), & \text{if reduction} = \text{'none';}\\ \operatorname{mean}(L(x, target)), & \text{if reduction} = \text{'mean';}\\ \operatorname{sum}(L(x, target)) / x.\operatorname{shape}[0], & \text{if reduction} = \text{'batchmean';}\\ \operatorname{sum}(L(x, target)), & \text{if reduction} = \text{'sum'.} \end{cases}\end{split}\]

where \(x\) represents logits, \(target\) represents labels, and \(\ell(x, target)\) represents output.

Note

  • On Ascend, float64 dtype is not currently supported.

  • The output aligns with the mathematical definition of Kullback-Leibler divergence only when reduction is set to ‘batchmean’.

Parameters

reduction (str) –

Specifies the reduction to be applied to the output. Default: 'mean' .

  • On Ascend, the value of reduction must be one of 'batchmean', 'none' or 'sum'.

  • On GPU, the value of reduction must be one of 'mean', 'none' or 'sum'.

  • On CPU, the value of reduction must be one of 'mean', 'batchmean', 'none' or 'sum'.

Inputs:
  • logits (Tensor) - The input Tensor. The data type must be float16, float32 or float64.

  • labels (Tensor) - The label Tensor which has the same shape and data type as logits.

Outputs:

Tensor or Scalar, if reduction is 'none', then output is a tensor and has the same shape as logits. Otherwise it is a scalar.

Raises
  • TypeError – If reduction is not a str.

  • TypeError – If neither logits nor labels is a Tensor.

  • TypeError – If dtype of logits or labels is not currently supported.

  • ValueError – If shape of logits is not the same as labels.

  • RuntimeError – If logits or labels is a scalar when reduction is ‘batchmean’.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, nn, ops
>>> class Net(nn.Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self.kldiv_loss = ops.KLDivLoss(reduction='sum')
...     def construct(self, logits, labels):
...         result = self.kldiv_loss(logits, labels)
...         return result
...
>>> net = Net()
>>> logits = Tensor(np.array([0.2, 0.7, 0.1]), mindspore.float32)
>>> labels = Tensor(np.array([0., 1., 0.]), mindspore.float32)
>>> output = net(logits, labels)
>>> print(output)
-0.7