mindspore.ops.BiasAdd
- class mindspore.ops.BiasAdd(data_format='NCHW')[source]
Returns the sum of the input Tensor and the bias Tensor. Before adding, the bias Tensor will be broadcasted to be consistent with the shape of the input Tensor.
- Parameters
data_format (str, optional) – The format of input and output data. It should be
"NHWC"
,"NCHW"
or"NCDHW"
. Default is"NCHW"
.
- Inputs:
input_x (Tensor) - The input tensor. The shape can be 2-5 dimensions. Supported dtypes:
Ascend/CPU: all Number type.
GPU: float16, float32, int8.
bias (Tensor) - The bias tensor, with shape \((C)\). C must be the same as channel dimension C of input_x. It has the same type as input_x.
- Outputs:
Tensor, with the same shape and data type as input_x.
- Raises
TypeError – If data_format is not a str.
ValueError – If value of data_format is not in the range of [‘NHWC’,’NCHW’,’NCDHW’].
TypeError – If input_x or bias is not a Tensor.
TypeError – If dtype of input_x and bias is inconsistent.
TypeError – If dimension of input_x is not in the range [2, 5].
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.arange(6).reshape((2, 3)), mindspore.float32) >>> bias = Tensor(np.random.random(3).reshape((3,)), mindspore.float32) >>> bias_add = ops.BiasAdd() >>> output = bias_add(input_x, bias) >>> print(output.shape) (2, 3)