mindspore.ops.ApplyAddSign
- class mindspore.ops.ApplyAddSign[source]
Updates relevant entries according to the AddSign algorithm.
\[\begin{split}\begin{array}{ll} \\ m_{t+1} = \beta * m_{t} + (1 - \beta) * g \\ \text{update} = (\alpha + \text{sign_decay} * sign(g) * sign(m)) * g \\ var = var - lr_{t+1} * \text{update} \end{array}\end{split}\]\(t\) represents updating step while \(m\) represents the 1st moment vector, \(m_{t}\) is the last moment of \(m_{t+1}\), \(lr\) represents scaling factor lr, \(g\) represents grad, \(\alpha\) represents alpha, \(\beta\) represents beta.
Inputs of var, accum and grad comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type. The data type of inputs must be float16 or float32 on Ascend and float16, float32 or float64 on CPU and GPU.
- Inputs:
var (Parameter) - Variable tensor to be updated. With float16, float32 or float64 data type. The shape is \((N, *)\) where \(*\) means, any number of additional dimensions.
m (Parameter) - Variable tensor to be updated, has the same data type as var.
lr (Union[Number, Tensor]) - The learning rate value, must be a scalar. With float16, float32 or float64 data type.
alpha (Union[Number, Tensor]) - Must be a scalar. With float16, float32 or float64 data type.
sign_decay (Union[Number, Tensor]) - Must be a scalar. With float16, float32 or float64 data type.
beta (Union[Number, Tensor]) - The exponential decay rate, must be a scalar. With float16, float32 or float64 data type.
grad (Tensor) - A tensor of the same shape as var, for the gradient.
- Outputs:
Tuple of 2 Tensors, the updated parameters.
var (Tensor) - The same shape and data type as var.
m (Tensor) - The same shape and data type as m.
- Raises
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import numpy as np >>> from mindspore import Tensor, nn, ops, Parameter >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.apply_add_sign = ops.ApplyAddSign() ... self.var = Parameter(Tensor(np.array([[0.6, 0.4], ... [0.1, 0.5]]).astype(np.float32)), name="var") ... self.m = Parameter(Tensor(np.array([[0.6, 0.5], ... [0.2, 0.6]]).astype(np.float32)), name="m") ... self.lr = 0.001 ... self.alpha = 1.0 ... self.sign_decay = 0.99 ... self.beta = 0.9 ... def construct(self, grad): ... out = self.apply_add_sign(self.var, self.m, self.lr, self.alpha, self.sign_decay, self.beta, grad) ... return out ... >>> net = Net() >>> grad = Tensor(np.array([[0.3, 0.7], [0.1, 0.8]]).astype(np.float32)) >>> output = net(grad) >>> print(output) (Tensor(shape=[2, 2], dtype=Float32, value= [[ 5.99403024e-01, 3.98607016e-01], [ 9.98010039e-02, 4.98407990e-01]]), Tensor(shape=[2, 2], dtype=Float32, value= [[ 5.70000052e-01, 5.19999981e-01], [ 1.89999998e-01, 6.20000064e-01]]))