mindspore.dataset.vision.RandomResizedCropWithBBox
- class mindspore.dataset.vision.RandomResizedCropWithBBox(size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation=Inter.BILINEAR, max_attempts=10)[source]
Crop the input image to a random size and aspect ratio and adjust bounding boxes accordingly.
- Parameters
size (Union[int, Sequence[int]]) – The size of the output image. The size value(s) must be positive. If size is an integer, a square crop of size (size, size) is returned. If size is a sequence of length 2, it should be (height, width).
scale (Union[list, tuple], optional) – Range (min, max) of respective size of the original size to be cropped, which must be non-negative. Default:
(0.08, 1.0)
.ratio (Union[list, tuple], optional) – Range (min, max) of aspect ratio to be cropped, which must be non-negative. Default:
(3. / 4., 4. / 3.)
.interpolation (Inter, optional) – Image interpolation method defined by
Inter
. Default:Inter.BILINEAR
.max_attempts (int, optional) – The maximum number of attempts to propose a valid crop area. Default:
10
. If exceeded, fall back to use center crop instead.
- Raises
TypeError – If size is not of type int or Sequence[int].
TypeError – If scale is not of type tuple.
TypeError – If ratio is not of type tuple.
TypeError – If interpolation is not of type Inter.
TypeError – If max_attempts is not of type integer.
ValueError – If size is not positive.
ValueError – If scale is negative.
ValueError – If ratio is negative.
ValueError – If max_attempts is not positive.
RuntimeError – If given tensor shape is not <H, W> or <H, W, C>.
- Supported Platforms:
CPU
Examples
>>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.vision import Inter >>> >>> decode_op = vision.Decode() >>> bbox_op = vision.RandomResizedCropWithBBox(size=50, interpolation=Inter.NEAREST) >>> transforms_list = [decode_op, bbox_op] >>> image_folder_dataset = ds.ImageFolderDataset("/path/to/image_folder_dataset_directory") >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns=["image"])
- Tutorial Examples: