mindspore.dataset.ImageFolderDataset
- class mindspore.dataset.ImageFolderDataset(dataset_dir, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, extensions=None, class_indexing=None, decode=False, num_shards=None, shard_id=None, cache=None, decrypt=None)[source]
A source dataset that reads images from a tree of directories. All images within one folder have the same label.
The generated dataset has two columns:
[image, label]
. The tensor of columnimage
is of the uint8 type. The tensor of columnlabel
is of a scalar of uint32 type.- Parameters
dataset_dir (str) – Path to the root directory that contains the dataset.
num_samples (int, optional) – The number of images to be included in the dataset. Default:
None
, all images.num_parallel_workers (int, optional) – Number of worker threads to read the data. Default:
None
, will use global default workers(8), it can be set bymindspore.dataset.config.set_num_parallel_workers()
.shuffle (bool, optional) – Whether or not to perform shuffle on the dataset. Default:
None
, expected order behavior shown in the table below.sampler (Sampler, optional) – Object used to choose samples from the dataset. Default:
None
, expected order behavior shown in the table below.extensions (list[str], optional) – List of file extensions to be included in the dataset. Default:
None
.class_indexing (dict, optional) – A str-to-int mapping from folder name to index Default:
None
, the folder names will be sorted alphabetically and each class will be given a unique index starting from 0.decode (bool, optional) – Decode the images after reading. Default:
False
.num_shards (int, optional) – Number of shards that the dataset will be divided into. Default:
None
. When this argument is specified, num_samples reflects the maximum sample number of per shard.shard_id (int, optional) – The shard ID within num_shards . Default:
None
. This argument can only be specified when num_shards is also specified.cache (DatasetCache, optional) – Use tensor caching service to speed up dataset processing. More details: Single-Node Data Cache . Default:
None
, which means no cache is used.decrypt (callable, optional) – Image decryption function, which accepts the path of the encrypted image file and returns the decrypted bytes data. Default:
None
, no decryption.
- Raises
RuntimeError – If dataset_dir does not contain data files.
ValueError – If num_parallel_workers exceeds the max thread numbers.
RuntimeError – If sampler and shuffle are specified at the same time.
RuntimeError – If sampler and num_shards/shard_id are specified at the same time.
RuntimeError – If num_shards is specified but shard_id is None.
RuntimeError – If shard_id is specified but num_shards is None.
RuntimeError – If class_indexing is not a dictionary.
ValueError – If shard_id is not in range of [0, num_shards ).
- Tutorial Examples:
Note
The shape of the image column is [image_size] if decode flag is
False
, or [H,W,C] otherwise.The parameters num_samples , shuffle , num_shards , shard_id can be used to control the sampler used in the dataset, and their effects when combined with parameter sampler are as follows.
Parameter sampler
Parameter num_shards / shard_id
Parameter shuffle
Parameter num_samples
Sampler Used
mindspore.dataset.Sampler type
None
None
None
sampler
numpy.ndarray,list,tuple,int type
/
/
num_samples
SubsetSampler(indices = sampler , num_samples = num_samples )
iterable type
/
/
num_samples
IterSampler(sampler = sampler , num_samples = num_samples )
None
num_shards / shard_id
None / True
num_samples
DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = True , num_samples = num_samples )
None
num_shards / shard_id
False
num_samples
DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = False , num_samples = num_samples )
None
None
None / True
None
RandomSampler(num_samples = num_samples )
None
None
None / True
num_samples
RandomSampler(replacement = True , num_samples = num_samples )
None
None
False
num_samples
SequentialSampler(num_samples = num_samples )
Examples
>>> import mindspore.dataset as ds >>> image_folder_dataset_dir = "/path/to/image_folder_dataset_directory" >>> >>> # 1) Read all samples (image files) in image_folder_dataset_dir with 8 threads >>> dataset = ds.ImageFolderDataset(dataset_dir=image_folder_dataset_dir, ... num_parallel_workers=8) >>> >>> # 2) Read all samples (image files) from folder cat and folder dog with label 0 and 1 >>> dataset = ds.ImageFolderDataset(dataset_dir=image_folder_dataset_dir, ... class_indexing={"cat":0, "dog":1}) >>> >>> # 3) Read all samples (image files) in image_folder_dataset_dir with extensions .JPEG >>> # and .png (case sensitive) >>> dataset = ds.ImageFolderDataset(dataset_dir=image_folder_dataset_dir, ... extensions=[".JPEG", ".png"])
About ImageFolderDataset:
You can construct the following directory structure from your dataset files and read by MindSpore’s API.
. └── image_folder_dataset_directory ├── class1 │ ├── 000000000001.jpg │ ├── 000000000002.jpg │ ├── ... ├── class2 │ ├── 000000000001.jpg │ ├── 000000000002.jpg │ ├── ... ├── class3 │ ├── 000000000001.jpg │ ├── 000000000002.jpg │ ├── ... ├── classN ├── ...
Pre-processing Operation
Apply a function in this dataset. |
|
Concatenate the dataset objects in the input list. |
|
Filter dataset by prediction. |
|
Map func to each row in dataset and flatten the result. |
|
Apply each operation in operations to this dataset. |
|
The specified columns will be selected from the dataset and passed into the pipeline with the order specified. |
|
Rename the columns in input datasets. |
|
Repeat this dataset count times. |
|
Reset the dataset for next epoch. |
|
Save the dynamic data processed by the dataset pipeline in common dataset format. |
|
Shuffle the dataset by creating a cache with the size of buffer_size . |
|
Skip the first N elements of this dataset. |
|
Split the dataset into smaller, non-overlapping datasets. |
|
Take the first specified number of samples from the dataset. |
|
Zip the datasets in the sense of input tuple of datasets. |
Batch
Combine batch_size number of consecutive rows into batch which apply per_batch_map to the samples first. |
|
Bucket elements according to their lengths. |
|
Combine batch_size number of consecutive rows into batch which apply pad_info to the samples first. |
Iterator
Create an iterator over the dataset. |
|
Create an iterator over the dataset. |
Attribute
Return the size of batch. |
|
Get the mapping dictionary from category names to category indexes. |
|
Return the names of the columns in dataset. |
|
Return the number of batches in an epoch. |
|
Get the replication times in RepeatDataset. |
|
Get the column index, which represents the corresponding relationship between the data column order and the network when using the sink mode. |
|
Get the number of classes in a dataset. |
|
Get the shapes of output data. |
|
Get the types of output data. |
Apply Sampler
Add a child sampler for the current dataset. |
|
Replace the last child sampler of the current dataset, remaining the parent sampler unchanged. |
Others
Return a transferred Dataset that transfers data through a device. |
|
Release a blocking condition and trigger callback with given data. |
|
Add a blocking condition to the input Dataset and a synchronize action will be applied. |
|
Serialize a pipeline into JSON string and dump into file if filename is provided. |