# Function Differences with torch.range [](https://gitee.com/mindspore/docs/blob/r2.0/docs/mindspore/source_en/note/api_mapping/pytorch_diff/range.md) ## torch.range ```python torch.range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False ) ``` For more information, see [torch.range](https://pytorch.org/docs/1.8.1/generated/torch.range.html#torch.range). ## mindspore.ops.range ```python mindspore.ops.range(start, end, step ) ``` For more information, see [mindspore.ops.range](https://www.mindspore.cn/docs/en/r2.0/api_python/ops/mindspore.ops.range.html). ## Differences MindSpore: The dtype of the output tensor depends on the input tensor. PyTorch: The dtype of the output tensor depends on the parameter `dtype`. | Categories | Subcategories | PyTorch | MindSpore | Difference | |------------|---------------|---------------|-----------|-------------------------------------------------------| | input | input 1 | start | start | MindSpore must be a Tensor, whereas, PyTorch is float | | | input 2 | end | end | MindSpore must be a Tensor, whereas, PyTorch is float | | | input 3 | step | step | MindSpore must be a Tensor, whereas, PyTorch is float | | | input 4 | out | - | Not involved | | | input 5 | dtype | - | Not involved | | | input 6 | layout | - | Not involved | | | input 7 | device | - | Not involved | | | input 8 | requires_grad | - | Not involved | ## Code Example ```python import mindspore as ms import torch from mindspore import Tensor, ops # PyTorch torch.range(0, 10, 4) # tensor([0., 4., 8.]) # MindSpore start = Tensor(0, ms.int32) limit = Tensor(10, ms.int32) delta = Tensor(4, ms.int32) output = ops.range(start, limit, delta) print(output) # [0 4 8] ```