# Function Differences with torch.median [](https://gitee.com/mindspore/docs/blob/r2.0/docs/mindspore/source_en/note/api_mapping/pytorch_diff/median.md) The following mapping relationships can be found in this file. | PyTorch APIs | MindSpore APIs | | :-------------------: | :-----------------------: | | torch.median | mindspore.ops.median | | torch.Tensor.median | mindspore.Tensor.median | ## torch.median ```text torch.median(input, dim=-1, keepdim=False, *, out=None) -> Tensor ``` For more information, see [torch.median](https://pytorch.org/docs/1.8.1/generated/torch.median.html#torch.median). ## mindspore.ops.median ```text mindspore.ops.median(input, axis=-1, keepdims=False) -> Tensor ``` For more information, see [mindspore.ops.median](https://mindspore.cn/docs/en/r2.0/api_python/ops/mindspore.ops.median.html). ## Differences PyTorch: Output the median and index of `input` according to the specified `dim`. `keepdim` controls whether the output and input have the same dimension. Return the median of all elements when the input has only `input`, or the median and index of the specified dimension when the input contains `dim`. `out` can get the output. MindSpore: Output the median and index of `input` according to the specified `axis`. The `keepdims` function is identical to PyTorch. Unlike Pytorch, MindSpore returns the median and index in the specified dimension, regardless of whether the input contains `axis` or not. MindSpore does not have `out` parameter. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |---| | Parameters | Parameter 1 | input | input | Consistent | | | Parameter 2 | dim | axis | Same function, different parameter names | | | Parameter 3 | keepdim | keepdims | Same function, different parameter names | | | Parameter 4 | out | - | PyTorch's `out` can get the output. MindSpore does not have this parameter | ### Code Example ```python # PyTorch import torch input = torch.tensor([[1, 2.5, 3, 1], [2.5, 3, 2, 1]], dtype=torch.float32) print(torch.median(input)) # tensor(2.) print(torch.median(input, dim=1, keepdim=True)) # torch.return_types.median( # values=tensor([[1.], # [2.]]), # indices=tensor([[3], # [2]])) # MindSpore import mindspore x = mindspore.Tensor([[1, 2.5, 3, 1], [2.5, 3, 2, 1]], dtype=mindspore.float32) print(mindspore.ops.median(x, axis=1, keepdims=True)) # (Tensor(shape=[2, 1], dtype=Float32, value= # [[ 1.00000000e+00], # [ 2.00000000e+00]]), Tensor(shape=[2, 1], dtype=Int64, value= # [[3], # [2]])) ```