# Function Differences with torch.nn.functional.elu [](https://gitee.com/mindspore/docs/blob/r2.0/docs/mindspore/source_en/note/api_mapping/pytorch_diff/elu.md) ## torch.nn.functional.elu ```text torch.nn.functional.elu(input, alpha=1.0, inplace=False) -> Tensor ``` For more information, see [torch.nn.functional.elu](https://pytorch.org/docs/1.8.1/nn.functional.html#elu). ## mindspore.ops.elu ```text mindspore.ops.elu(input_x, alpha=1.0) -> Tensor ``` For more information, see [mindspore.ops.elu](https://www.mindspore.cn/docs/en/r2.0/api_python/ops/mindspore.ops.elu.html). ## Differences PyTorch: compute the exponential linear value of the input x. The result is $ \text{elu}(x) = \max(0,x) + \min(0, \alpha * (\exp(x) - 1)) $, with the inplace parameter to choose whether to operate in-place or not, and the default is False. MindSpore: MindSpore API implements the same functions as PyTorch, but α currently only supports 1.0. | Categories | Subcategories |PyTorch | MindSpore | Difference | | ---- | ----- | ------- | --------- | ----| |Parameters | Parameter 1 | input | input_x |Same function, different parameter names | | | Parameter 2 | alpha | alpha | α factor. MindSpore currently only supports alpha equal to 1.0 | | | Parameter 3 | inplace | - | MindSpore does not have this parameter | ### Code Example 1 > Both APIs implement the exponential linear unit function, but PyTorch can customize the α coefficient, and MindSpore only supports a coefficient of 1.0. ```python # PyTorch import torch from torch import tensor from torch.nn.functional import elu import numpy as np x_ = np.array([[np.arange(-6,0).reshape(2, 3),np.arange(0,6).reshape(2, 3)]]) x = tensor(x_, dtype=torch.float32) output = elu(x, alpha = 1).detach().numpy() print(output) # [[[[-0.9975212 -0.99326205 -0.9816844 ] # [-0.95021296 -0.86466473 -0.63212055]] # # [[ 0. 1. 2. ] # [ 3. 4. 5. ]]]] # MindSpore import mindspore as ms from mindspore import ops import numpy as np x_ = np.array([[np.arange(-6,0).reshape(2, 3),np.arange(0,6).reshape(2, 3)]]) x = ms.Tensor(x_, ms.float32) output = ops.elu(x) print(output) # [[[[-0.9975212 -0.99326205 -0.9816844 ] # [-0.95021296 -0.86466473 -0.6321205 ]] # # [[ 0. 1. 2. ] # [ 3. 4. 5. ]]]] ```