# Function Differences with torch.cdist [](https://gitee.com/mindspore/docs/blob/r2.0/docs/mindspore/source_en/note/api_mapping/pytorch_diff/cdist.md) ## torch.cdist ```text torch.cdist(x1, x2, p=2.0, compute_mode='use_mm_for_euclid_dist_if_necessary') ``` For more information, see [torch.cdist](https://pytorch.org/docs/1.8.1/generated/torch.cdist.html). ## mindspore.ops.cdist ```text mindspore.ops.cdist(x1, x2, p=2.0) ``` For more information, see [mindspore.ops.cdist](https://mindspore.cn/docs/en/r2.0/api_python/ops/mindspore.ops.cdist.html). ## Differences PyTorch: Compute the p-norm distance between each pair of column vectors of the two Tensors. MindSpore: MindSpore API basically implements the same functionality as PyTorch, with a slight difference in accuracy. | Categories | Subcategories | PyTorch | MindSpore | Differences | | --- |---------------|---------| --- |-------------| | Parameters | Parameter 1 |x1 | x1 | - | | | Parameter 2 | x2 | x2 | - | | | Parameter 3 | p | p | - | | | Parameter 4 | compute_mode | - | torch specifies whether to calculate the Euclidean distance by using matrix multiplication, which is not available in MindSpore | ### Code Example 1 ```python # PyTorch import torch import numpy as np x = torch.tensor(np.array([[1.0, 1.0], [2.0, 2.0]]).astype(np.float32)) y = torch.tensor(np.array([[3.0, 3.0], [3.0, 3.0]]).astype(np.float32)) output = torch.cdist(x, y, 2.0) print(output) # tensor([[2.8284, 2.8284], # [1.4142, 1.4142]]) # MindSpore import mindspore.numpy as np from mindspore import Tensor from mindspore import ops x = Tensor(np.array([[1.0, 1.0], [2.0, 2.0]]).astype(np.float32)) y = Tensor(np.array([[3.0, 3.0], [3.0, 3.0]]).astype(np.float32)) output = ops.cdist(x, y, 2.0) print(output) # [[2.828427 2.828427 ] # [1.4142135 1.4142135]] ```