# Function differences with torchvision.transforms.ToPILImage [](https://gitee.com/mindspore/docs/blob/r2.0/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToPIL.md) ## torchvision.transforms.ToPILImage ```python class torchvision.transforms.ToPILImage( mode=None ) ``` For more information, see [torchvision.transforms.ToPILImage](https://pytorch.org/vision/0.10/transforms.html#torchvision.transforms.ToPILImage). ## mindspore.dataset.vision.ToPIL ```python class mindspore.dataset.vision.ToPIL ``` For more information, see [mindspore.dataset.vision.ToPIL](https://mindspore.cn/docs/en/r2.0/api_python/dataset_vision/mindspore.dataset.vision.ToPIL.html#mindspore.dataset.vision.ToPIL). ## Differences PyTorch: Converts a tensor or numpy array to PIL Image. The input can be a torch Tensor in the format of <C, H, W>, or a numpy array in the format of <H, W, C>. MindSpore: The input is a decoded numpy array, which is converted into a PIL type image. ## Code Example ```python import numpy as np import torch as T from torchvision.transforms import ToPILImage import mindspore.dataset.vision as vision # In MindSpore, ToPIL transform the numpy.ndarray to PIL Image. image = np.random.random((64,64)) img = vision.ToPIL()(image) img.show() # Out: # window of PIL image # In torch, ToPILImage transforms the input to PIL Image. image = T.randn((64, 64)) img = ToPILImage()(image) img.show() # Out: # window of PIL image ```