# Function differences with torchtext.data.functional.sentencepiece_numericalizer [](https://gitee.com/mindspore/docs/blob/r2.0/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md) ## torchtext.data.functional.sentencepiece_numericalizer ```python torchtext.data.functional.sentencepiece_numericalizer( sp_model ) ``` For more information, see [torchtext.data.functional.sentencepiece_numericalizer](https://pytorch.org/text/0.10.0/data_functional.html#sentencepiece-numericalizer). ## mindspore.dataset.text.SentencePieceTokenizer ```python class mindspore.dataset.text.SentencePieceTokenizer( mode, out_type ) ``` For more information, see [mindspore.dataset.text.SentencePieceTokenizer](https://mindspore.cn/docs/en/r2.0/api_python/dataset_text/mindspore.dataset.text.SentencePieceTokenizer.html#mindspore.dataset.text.SentencePieceTokenizer). ## Differences PyTorch: A sentencepiece model to numericalize a text sentence into a generator according to the ids. MindSpore: According to the incoming sentencepiece model, the input text is segmented and marked; the output type is string or int type. ## Code Example ```python import mindspore.dataset as ds from mindspore.dataset import text from mindspore.dataset.text import SentencePieceModel, SPieceTokenizerOutType from torchtext.data.functional import sentencepiece_numericalizer from torchtext.data.functional import load_sp_model # In MindSpore, return tokenizer from vocab object. sentence_piece_vocab_file = "/path/to/datasets/1.txt" vocab = text.SentencePieceVocab.from_file( [sentence_piece_vocab_file], 27, 0.9995, SentencePieceModel.UNIGRAM, {}) tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.INT) text_file_dataset_dir = "/path/to/datasets/2.txt" text_file_dataset1 = ds.TextFileDataset(dataset_files=text_file_dataset_dir) text_file_dataset = text_file_dataset1.map(operations=tokenizer) for item in text_file_dataset: print(item[0]) break # Out: # [ 165 28 8 11 4746 1430 4] root = "/path/to/m_user.model" sp_model = load_sp_model(root) # In torch, return the sentencepiece model according to the input model path. sp_id_generator = sentencepiece_numericalizer(sp_model) list_a = ["sentencepiece encode as pieces", "examples to try!"] list(sp_id_generator(list_a)) ```