# Function Differences with torch.nn.MaxPool2d [](https://gitee.com/mindspore/docs/blob/r2.0/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MaxPool2d.md) ## torch.nn.MaxPool2d ```text torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)(input) -> Tensor ``` For more information, see [torch.nn.MaxPool2d](https://pytorch.org/docs/1.8.1/generated/torch.nn.MaxPool2d.html). ## mindspore.nn.MaxPool2d ```text mindspore.nn.MaxPool2d(kernel_size=1, stride=1, pad_mode="valid", padding=0, dilation=1, return_indices=False, ceil_mode=False, data_format="NCHW")(x) -> Tensor ``` For more information, see [mindspore.nn.MaxPool2d](https://www.mindspore.cn/docs/en/r2.0/api_python/nn/mindspore.nn.MaxPool2d.html). ## Differences PyTorch: Perform two-dimensional maximum pooling operations on the input multidimensional data. MindSpore: This API implementation function of MindSpore is compatible with TensorFlow and PyTorch, When `pad_mode` is "valid" or "same", the function is consistent with TensorFlow, and when `pad_mode` is "pad", the function is consistent with PyTorch, MindSpore additionally supports 2D input, which is consistent with PyTorch 1.12. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |---| |Parameters | Parameter 1 | kernel_size | kernel_size |Consistent function, no default values for PyTorch | | | Parameter 2 | stride | stride |Consistent function, different default value | | | Parameter 3 | padding |padding| Consistent | | | Parameter 4 | dilation | dilation | Consistent | | | Parameter 5 | return_indices | return_indices | Consistent| | | Parameter 6 | ceil_mode | ceil_mode | Consistent | | | Parameter 7 | input | x | Consistent function, different parameter names | | | Parameter 8 | - | pad_mode | Control the padding mode, and PyTorch does not have this parameter | | | Parameter 9 | - | data_format | The input data format can be "NHWC" or "NCHW". Default value: "NCHW" | ### Code Example 1 > Construct a pooling layer with a convolution kernel size of 1x3 and a step size of 1. The padding defaults to 0 and no element filling is performed. The default value of dilation is 1, and the elements in the window are contiguous. Pooling padding mode returns the output from a valid calculation without padding, and excess pixels that do not satisfy the calculation are discarded. With the same parameter settings, the two APIs achieve the same function to perform two-dimensional maximum pooling operations on the input multidimensional data. ```python # PyTorch import torch from torch import tensor import numpy as np pool = torch.nn.MaxPool2d(kernel_size=3, stride=1) x = tensor(np.random.randint(0, 10, [1, 2, 4, 4]), dtype=torch.float32) output = pool(x) result = output.shape print(tuple(result)) # (1, 2, 2, 2) # MindSpore import mindspore from mindspore import Tensor import numpy as np pool = mindspore.nn.MaxPool2d(kernel_size=3, stride=1) x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32) output = pool(x) result = output.shape print(result) # (1, 2, 2, 2) ``` ### Code Example 2 > Use pad mode to ensure functional consistency. ```python # PyTorch import torch import numpy as np np_x = np.random.randint(0, 10, [1, 2, 4, 4]) x = torch.tensor(np_x, dtype=torch.float32) max_pool = torch.nn.MaxPool2d(kernel_size=2, stride=1, padding=1, dilation=1, return_indices=False) output = max_pool(x) result = output.shape print(tuple(result)) # (1, 2, 5, 5) # MindSpore import mindspore as ms from mindspore import Tensor import mindspore.nn as nn import numpy as np np_x = np.random.randint(0, 10, [1, 2, 4, 4]) x = Tensor(np_x, ms.float32) max_pool = nn.MaxPool2d(kernel_size=2, stride=1, pad_mode='pad', padding=1, dilation=1, return_indices=False) output = max_pool(x) result = output.shape print(result) # (1, 2, 5, 5) ```