# Function Differences with torch.nn.GRU [](https://gitee.com/mindspore/docs/blob/r2.0/docs/mindspore/source_en/note/api_mapping/pytorch_diff/GRU.md) ## torch.nn.GRU ```text class torch.nn.GRU( input_size, hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0, bidirectional=False)(input, h_0) -> Tensor ``` For more information, see [torch.nn.GRU](https://pytorch.org/docs/1.8.1/generated/torch.nn.GRU.html). ## mindspore.nn.GRU ```text class mindspore.nn.GRU( input_size, hidden_size, num_layers=1, has_bias=True, batch_first=False, dropout=0.0, bidirectional=False)(x, hx, seq_length) -> Tensor ``` For more information, see [mindspore.nn.GRU](https://mindspore.cn/docs/en/r2.0/api_python/nn/mindspore.nn.GRU.html). ## Differences PyTorch: Calculate the output sequence and the final state based on the output sequence and the given initial state. MindSpore: Consistent function. One more interface input seq_length, indicating the length of each sequence in the input batch. | Categories | Subcategories |PyTorch | MindSpore | Difference | | ---- | ------ | :------------ | ------------- | ------------------------- | | Parameters | Parameter 1 | input_size| input_size | - | | | Parameter 2 | hidden_size | hidden_size | - | | | Parameter 3 | num_layers | num_layers | - | | | Parameter 4 | bias | has_bias | Same function, different parameter names | | | Parameter 5 | batch_first | batch_first | - | | | Parameter 6 | dropout | dropout | - | | | Parameter 7 | bidirectional | bidirectional | - | | Input | Input 1 | input | x | Same function, different parameter names | | | Input 2 | h_0 | hx | Same function, different parameter names | | | Input 3 | - | seq_length | The length of each sequence in input batch | ### Code Example > The two APIs achieve the same function and have the same usage. ```python # PyTorch import torch import torch.nn as nn import numpy as np rnn = nn.GRU(10, 16, 2, batch_first=True) input = torch.ones([3, 5, 10], dtype=torch.float32) h0 = torch.ones([1 * 2, 3, 16], dtype=torch.float32) output, hn = rnn(input, h0) output = output.detach().numpy() print(output.shape) # (3, 5, 16) # MindSpore import mindspore from mindspore import Tensor, nn net = nn.GRU(10, 16, 2, batch_first=True) x = Tensor(np.ones([3, 5, 10]), mindspore.float32) h0 = Tensor(np.ones([1 * 2, 3, 16]), mindspore.float32) output, hn = net(x, h0) print(output.shape) # (3, 5, 16) ```