Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.gather

mindspore.ops.gather(input_params, input_indices, axis)[source]

Returns the slice of the input tensor corresponding to the elements of input_indices on the specified axis.

The following figure shows the calculation process of Gather commonly:

../../_images/Gather.png

where params represents the input input_params, and indices represents the index to be sliced input_indices.

Note

  1. The value of input_indices must be in the range of [0, input_param.shape[axis]), the result is undefined out of range.

  2. The data type of input_params cannot be bool_ on Ascend platform currently.

Parameters
  • input_params (Tensor) – The original Tensor. The shape of tensor is (x1,x2,...,xR).

  • input_indices (Tensor) – Index tensor to be sliced, the shape of tensor is (y1,y2,...,yS). Specifies the indices of elements of the original Tensor. The data type can be int32 or int64.

  • axis (int) – Specifies the dimension index to gather indices.

Returns

Tensor, the shape of tensor is input_params.shape[:axis]+input_indices.shape+input_params.shape[axis+1:].

Raises
  • TypeError – If axis is not an int.

  • TypeError – If input_params is not a tensor.

  • TypeError – If input_indices is not a tensor of type int.

Supported Platforms:

Ascend GPU CPU

Examples

>>> # case1: input_indices is a Tensor with shape (5, ).
>>> input_params = Tensor(np.array([1, 2, 3, 4, 5, 6, 7]), mindspore.float32)
>>> input_indices = Tensor(np.array([0, 2, 4, 2, 6]), mindspore.int32)
>>> axis = 0
>>> output = ops.gather(input_params, input_indices, axis)
>>> print(output)
[1. 3. 5. 3. 7.]
>>> # case2: input_indices is a Tensor with shape (2, 2). When the input_params has one dimension,
>>> # the output shape is equal to the input_indices shape.
>>> input_indices = Tensor(np.array([[0, 2], [2, 6]]), mindspore.int32)
>>> axis = 0
>>> output = ops.gather(input_params, input_indices, axis)
>>> print(output)
[[ 1. 3.]
 [ 3. 7.]]
>>> # case3: input_indices is a Tensor with shape (2, ) and
>>> # input_params is a Tensor with shape (3, 4) and axis is 0.
>>> input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32)
>>> input_indices = Tensor(np.array([0, 2]), mindspore.int32)
>>> axis = 0
>>> output = ops.gather(input_params, input_indices, axis)
>>> print(output)
[[1.  2.  3.  4.]
 [9. 10. 11. 12.]]
>>> # case4: input_indices is a Tensor with shape (2, ) and
>>> # input_params is a Tensor with shape (3, 4) and axis is 1.
>>> input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32)
>>> input_indices = Tensor(np.array([0, 2]), mindspore.int32)
>>> axis = 1
>>> output = ops.gather(input_params, input_indices, axis)
>>> print(output)
[[1.  3.]
 [5.  7.]
 [9. 11.]]