Static Graph Syntax Support
Overview
In graph mode, Python code is not executed by the Python interpreter. Instead, the code is compiled into a static computation graph, and then the static computation graph is executed.
Currently, only the function, Cell, and subclass instances modified by the @ms_function
decorator can be built.
For a function, build the function definition. For the network, build the construct
method and other methods or functions called by the construct
method.
For details about how to use ms_function
, click https://www.mindspore.cn/docs/en/r1.7/api_python/mindspore/mindspore.ms_function.html#mindspore.ms_function.
For details about the definition of Cell
, click https://www.mindspore.cn/docs/en/r1.7/api_python/nn/mindspore.nn.Cell.html.
Due to syntax parsing restrictions, the supported data types, syntax, and related operations during graph building are not completely consistent with the Python syntax. As a result, some usage is restricted.
The following describes the data types, syntax, and related operations supported during static graph building. These rules apply only to graph mode.
All the following examples run on the network in graph mode. For brevity, the network definition is not described.
Data Types
Built-in Python Data Types
Currently, the following built-in Python
data types are supported: Number
, String
, List
, Tuple
, and Dictionary
.
Number
Supports int
, float
, and bool
, but does not support complex numbers.
Number
can be defined on the network. That is, the syntax y = 1
, y = 1.2
, and y = True
are supported.
When the data is constant, the value of the data can be achieved at compile time, the forcible conversion to Number
is supported in the network. That is, the syntax y = int(x)
, y = float(x)
, and y = bool(x)
are supported.
String
String
can be constructed on the network. That is, the syntax y = "abcd"
is supported.
Forcible conversion to String
is not supported on the network. That is, the syntax y = str(x)
is not supported.
List
List
can be constructed on the network, that is, the syntax y = [1, 2, 3]
is supported.
Forcible conversion to List
is not supported on the network. That is, the syntax y = list(x)
is not supported.
List
to be output in the computation graph will be converted into Tuple
.
Supported APIs
append
: adds an element tolist
.For example:
from mindspore import ms_function @ms_function() def test_list(): x = [1, 2, 3] x.append(4) return x x = test_list() print('x:{}'.format(x))
The result is as follows:
x: (1, 2, 3, 4)
Supported index values and value assignment
Single-level and multi-level index values and value assignment are supported.
The index value supports only
int
andslice
.The element of
slice
data should be constant that can be deduced in the state of compiling graph.And not Supported to assign value to a result of list slice.The assigned value can be
Number
,String
,Tuple
,List
, orTensor
.For example:
from mindspore import ms_function, Tensor import numpy as np t = Tensor(np.array([1, 2, 3])) @ms_function() def test_index(): x = [[1, 2], 2, 3, 4] m = x[0][1] z = x[1::2] x[1] = t x[2] = "ok" x[3] = (1, 2, 3) x[0][1] = 88 n = x[-3] return m, z, x, n m, z, x, n = test_index() print('m:{}'.format(m)) print('z:{}'.format(z)) print('x:{}'.format(x)) print('n:{}'.format(n))
The result is as follows:
m:2 z:[2, 4] x:[[1, 88], Tensor(shape=[3], dtype=Int64, value= [1, 2, 3]), 'ok', (1, 2, 3)] n:[1 2 3]
Tuple
Tuple
can be constructed on the network, that is, the syntax y = (1, 2, 3)
is supported.
Forcible conversion to Tuple
is not supported on the network. That is, the syntax y = tuple(x)
is not supported.
Supported index values
The index value can be
int
,slice
,Tensor
, and multi-level index value. That is, the syntaxdata = tuple_x[index0][index1]...
is supported.Restrictions on the index value
Tensor
are as follows:Tuple
storesCell
. EachCell
must be defined before a tuple is defined. The number of input parameters, input parameter type, and input parametershape
of eachCell
must be the same. The number of outputs of eachCell
must be the same. The output type must be the same as the output shape.The index
Tensor
is a scalarTensor
whosedtype
isint32
. The value range is[-tuple_len, tuple_len)
, negative index is not supported inAscend
backend.This syntax does not support the running branches whose control flow conditions
if
,while
, andfor
are variables. The control flow conditions can be constants only.GPU
andAscend
backend is supported.
An example of the
int
andslice
indexes is as follows:from mindspore import ms_function, Tensor import numpy as np t = Tensor(np.array([1, 2, 3])) @ms_function() def test_index(): x = (1, (2, 3, 4), 3, 4, t) y = x[1][1] z = x[4] m = x[1:4] n = x[-4] return y, z, m, n y, z, m, n = test_index() print('y:{}'.format(y)) print('z:{}'.format(z)) print('m:{}'.format(m)) print('n:{}'.format(n))
The result is as follows:
y:3 z:[1 2 3] m:((2, 3, 4), 3, 4) n:(2, 3, 4)
An example of the
Tensor
index is as follows:from mindspore import Tensor, nn, dtype class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.relu = nn.ReLU() self.softmax = nn.Softmax() self.layers = (self.relu, self.softmax) def construct(self, x, index): ret = self.layers[index](x) return ret x = Tensor([-1.0], dtype.float32) net = Net() ret = net(x, 0) print('ret:{}'.format(ret))
The result is as follows:
ret:[0.]
Dictionary
Dictionary
can be constructed on the network. That is, the syntax y = {"a": 1, "b": 2}
is supported. Currently, only String
can be used as the key
value.
Dictionary
to be output in the computational graph will extract all value
values to form the Tuple
output.
Supported APIs
keys
: extracts allkey
values fromdict
to formTuple
and return it.values
: extracts allvalue
values fromdict
to formTuple
and return it.items
: extractsTuple
composed of each pair ofvalue
values andkey
values indict
to formTuple
and return.For example:
from mindspore import ms_function, Tensor import numpy as np x = {"a": Tensor(np.array([1, 2, 3])), "b": Tensor(np.array([4, 5, 6])), "c": Tensor(np.array([7, 8, 9]))} @ms_function() def test_dict(): y = x.keys() z = x.values() q = x.items() return y, z, q y, z, q = test_dict() print('y:{}'.format(y)) print('z:{}'.format(z))
The result is as follows:
y:('a', 'b', 'c') z:(Tensor(shape=[3], dtype=Int64, value= [1, 2, 3]), Tensor(shape=[3], dtype=Int64, value= [4, 5, 6]), Tensor(shape=[3], dtype=Int64, value= [7, 8, 9])) q:[('a', Tensor(shape=[3], dtype=Int64, value= [1, 2, 3])), ('b', Tensor(shape=[3], dtype=Int64, value= [4, 5, 6])), ('c', Tensor(shape=[3], dtype=Int64, value= [7, 8, 9]))]
Supported index values and value assignment
The index value supports only
String
. The assigned value can beNumber
,Tuple
, orTensor
.For example:
from mindspore import ms_function, Tensor import numpy as np x = {"a": Tensor(np.array([1, 2, 3])), "b": Tensor(np.array([4, 5, 6])), "c": Tensor(np.array([7, 8, 9]))} @ms_function() def test_dict(): y = x["b"] x["a"] = (2, 3, 4) return x, y x, y = test_dict() print('x:{}'.format(x)) print('y:{}'.format(y))
The result is as follows:
x:{'a': (2, 3, 4), 'b': Tensor(shape=[3], dtype=Int64, value= [4, 5, 6]), 'c': Tensor(shape=[3], dtype=Int64, value= [7, 8, 9])} y:[4 5 6]
MindSpore User-defined Data Types
Currently, MindSpore supports the following user-defined data types: Tensor
, Primitive
, and Cell
.
Tensor
Currently, tensors cannot be constructed on the network. That is, the syntax x = Tensor(args...)
is not supported.
You can use the @constexpr
decorator to modify the function and generate the Tensor
in the function.
For details about how to use @constexpr
, click https://www.mindspore.cn/docs/en/r1.7/api_python/ops/mindspore.ops.constexpr.html.
The constant Tensor
used on the network can be used as a network attribute and defined in init
, that is, self.x = Tensor(args...)
. Then the constant can be used in construct
.
In the following example, Tensor
of shape = (3, 4), dtype = int64
is generated by @constexpr
.
from mindspore import Tensor
from mindspore.ops import constexpr
@constexpr
def generate_tensor():
return Tensor(np.ones((3, 4)))
x = generate_tensor()
print('x:{}'.format(x))
The result is as follows:
x:[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
The following describes the attributes, APIs supported by the Tensor
.
Supported attributes
shape
: obtains the shape ofTensor
and returns aTuple
.dtype
: obtains the data type ofTensor
and returns a data type defined byMindSpore
.Supported APIs
all
: reducesTensor
through theall
operation. OnlyTensor
of theBool
type is supported.any
: reducesTensor
through theany
operation. OnlyTensor
of theBool
type is supported.
view
: reshapes Tensor
into input shape
.
expand_as
: expands Tensor
to the same shape
as another Tensor
based on the broadcast rule.
For example:
from mindspore import ms_function, Tensor
import numpy as np
x = Tensor(np.array([[True, False, True], [False, True, False]]))
y = Tensor(np.ones((2, 3), np.float32))
z = Tensor(np.ones((2, 2, 3)))
x_shape = x.shape
x_dtype = x.dtype
x_all = x.all()
x_any = x.any()
x_view = x.view((1, 6))
y_as_z = y.expand_as(z)
print('x_shape:{}'.format(x_shape))
print('x_dtype:{}'.format(x_dtype))
print('x_all:{}'.format(x_all))
print('x_any:{}'.format(x_any))
print('x_view:{}'.format(x_view))
print('y_as_z:{}'.format(y_as_z))
The result is as follows:
x_shape:(2, 3)
x_dtype:Bool
x_all:False
x_any:True
x_view:[[ True False True False True False]]
y_as_z:[[[1. 1. 1.]
[1. 1. 1.]]
[[1. 1. 1.]
[1. 1. 1.]]]
Primitive
Currently, Primitive
and its subclass instances can be constructed on the network. That is, the reduce_sum = ReduceSum(True)
syntax is supported.
However, during construction, the parameter can be specified only in position parameter mode, and cannot be specified in the key-value pair mode. That is, the syntax reduce_sum = ReduceSum(keep_dims=True)
is not supported.
Currently, the attributes and APIs related to Primitive
and its subclasses cannot be called on the network.
For details about the definition of Primitive
, click https://www.mindspore.cn/tutorials/experts/en/r1.7/operation/op_classification.html.
For details about the defined Primitive
, click https://www.mindspore.cn/docs/en/r1.7/api_python/ops/mindspore.ops.Primitive.html#mindspore.ops.Primitive.
Cell
Currently, Cell
and its subclass instances can be constructed on the network. That is, the syntax cell = Cell(args...)
is supported.
However, during construction, the parameter can be specified only in position parameter mode, and cannot be specified in the key-value pair mode. That is, the syntax cell = Cell(arg_name=value)
is not supported.
Currently, the attributes and APIs related to Cell
and its subclasses cannot be called on the network unless they are called through self
in construct
of Cell
.
For details about the definition of Cell
, click https://www.mindspore.cn/docs/en/r1.7/api_python/nn/mindspore.nn.Cell.html.
For details about the defined Cell
, click https://www.mindspore.cn/docs/en/r1.7/api_python/nn/mindspore.nn.Cell.html#mindspore.nn.Cell.
Parameter
Parameter
is a variable tensor, indicating the parameters that need to be updated during network training.
For details about the definition of Parameter
:https://www.mindspore.cn/docs/en/r1.7/api_python/mindspore/mindspore.Parameter.html#mindspore.Parameter
Primaries
Primaries represent the most tightly bound operations of the language Which contains Attribute references
, Subscriptions
, Calls
.
Attribute References
An attribute reference is a primary followed by a period and a name.
In Cell
instance of MindSpore, using attribute reference as left operands must meet the restrictions below:
The attribute must belong to self, such as self.xxx. It is not supported to change attribute of other instance.
The attribute type must be
Parameter
and be initialized in__init__
function.
For example:
from mindspore import ms_function, Tensor, nn, dtype, Parameter
import numpy as np
from mindspore.ops import constexpr
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.weight = Parameter(Tensor(3, dtype.float32), name="w")
self.m = 2
def construct(self, x, y):
self.weight = x # restictions matched, success
# self.m = 3 # self.m not Parameter type, failure
# y.weight = x # not attribute of self, failure
return x
net = Net()
ret = net(1, 2)
print('ret:{}'.format(ret))
The result is as follows:
ret:1
Index Value
Index value of a sequence Tuple
, List
, Dictionary
, Tensor
which called subscription in Python.
Index value of Tuple
refers to chapter Tuple of this page.
Index value of List
refers to chapter List of this page.
Index value of Dictionary
refers to chapter Dictionary of this page.
Index value of Tensor
refers to https://www.mindspore.cn/docs/en/r1.7/note/index_support.html#index-values
Calls
A call calls a callable object (e.g., Cell
or Primitive
) with a possibly empty series of arguments.
For example:
from mindspore import Tensor, nn, dtype, ops
import numpy as np
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.matmul = ops.MatMul()
def construct(self, x, y):
out = self.matmul(x, y) # A call of Primitive
return out
x = Tensor(np.ones(shape=[1, 3]), dtype.float32)
y = Tensor(np.ones(shape=[3, 4]), dtype.float32)
net = Net()
ret = net(x, y)
print('ret:{}'.format(ret))
The result is as follows:
ret:[[3. 3. 3. 3.]]
Operators
Arithmetic operators and assignment operators support the Number
and Tensor
operations, as well as the Tensor
operations of different dtype
.
This is because these operators are converted to operators with the same name for computation, and they support implicit type conversion.
For details about the rules, click https://www.mindspore.cn/docs/en/r1.7/note/operator_list_implicit.html#conversion-rules.
Unary Arithmetic Operators
Unary Arithmetic Operator |
Supported Type |
---|---|
|
|
|
|
|
|
notes:
In native python the
~
operator get the bitwise inversion of its integer argument; in Mindspore the~
redefined to get logic not forTensor(Bool)
.
Binary Arithmetic Operators
Binary Arithmetic Operator |
Supported Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Restrictions:
If all operands are
Number
type, value of Number can’t beBool
.If all operands are
Number
type, operations betweenFloat64
andInt32
are not supported.If either operand is
Tensor
type, left and right operands can’t both beBool
value.The result of
List * Number
is concatenate duplicate List Number times, data type of theList
must beNumber
,String
,None
orList
/Tuple
that contains these types. This rule applies toNumber * List
,Tuple * Number
,Number * Tuple
too.
Assignment Operators
Assignment Operator |
Supported Type、 |
---|---|
|
All Built-in Python Types that MindSpore supported and MindSpore User-defined Data Types. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Notes:
For
=
the scenarios below are not allowed:Only instance of
Cell
andPrimitve
can be created in function construct, the statement likexx = Tensor(...)
is forbidden.Only
Parameter
attribute of self can be assigned, for more detail refer to Attribute Reference.If all operands of
AugAssign
areNumber
type, value of Number can’t beBool
.If all operands of
AugAssign
areNumber
type, operations betweenFloat64
andInt32
are not supported.If either operand of
AugAssign
isTensor
type, left and right operands can’t both beBool
value.The result of
List *= Number
is concatenate duplicate List Number times, data type of theList
must beNumber
,String
,None
orList
/Tuple
that contains these types. This rule applies toNumber * List
,Tuple * Number
,Number * Tuple
too.
Logical Operators
Logical Operator |
Supported Type |
---|---|
|
|
|
|
|
|
Restrictions:
For operator
and
,or
, if left operand is aTensor
, right operand should beTensor
which has same data type with left operand, and bothTensor
must have only one element.For operator
and
,or
, if left operand notTensor
, right operand can be any supported type.
Compare Operators
Compare Operator |
Supported Type |
---|---|
|
|
|
Same as |
|
The value can only be |
|
The value can only be |
< |
|
<= |
|
> |
|
>= |
|
!= |
|
== |
|
Restrictions:
For operators
<
,<=
,>
,>=
,!=
, if all operators areNumber
type, value of Number can’t beBool
.For operators
<
,<=
,>
,>=
,!=
,==
, if all operands areNumber
type, operations betweenFloat64
andInt32
are not supported.For operators
<
,<=
,>
,>=
,!=
,==
, if either operand isTensor
type, left and right operands can’t both beBool
value.For operator
==
, if all operands areNumber
type, support bothNumber
haveBool
value, not support only oneNumber
hasBool
value.For operators
!=
,==
, all supported types butmstype
can compare withNone
.The chain comparison like:
a>b>c
is not supported.
Compound Statements
Conditional Control Statements
if Statements
Usage:
if (cond): statements...
x = y if (cond) else z
Parameter: cond
– Variables of Bool
type and constants of Bool
, List
, Tuple
, Dict
and String
types are supported.
Restrictions:
If
cond
is not a constant, the variable or constant assigned to a same sign in different branches should have same data type.If the data type of assigned variables or constants isTensor
, the variables and constants should have same shape and element type.The number of
if
cannot exceed 100.
Example 1:
from mindspore import ms_function, Tensor, dtype
x = Tensor([1, 2], dtype.int32)
y = Tensor([0, 3], dtype.int32)
m = 'xx'
n = 'yy'
@ms_function()
def test_cond(x, y):
if (x > y).any():
return m
else:
return n
ret = test_cond(x, y)
print('ret:{}'.format(ret))if (x > y).any():
return m
else:
return n
The data type of m
returned by the if
branch and n
returned by the else
branch must be same.
The result is as follows:
ret:xx
Example 2:
from mindspore import ms_function, Tensor, dtype
x = Tensor([1, 2], dtype.int32)
y = Tensor([0, 3], dtype.int32)
m = 'xx'
n = 'yy'
@ms_function()
def test_cond(x, y):
out = 'init'
if (x > y).any():
out = m
else:
out = n
return out
ret = test_cond(x, y)
print('ret:{}'.format(ret))
The variable or constant m
assigned to out
in if
branch and the variable or constant n
assigned to out in false
branch must have same data type.
The result is as follows:
ret:xx
Example 3:
from mindspore import ms_function, Tensor, dtype
x = Tensor([1, 2], dtype.int32)
y = Tensor([0, 3], dtype.int32)
m = 'xx'
@ms_function()
def test_cond(x, y):
out = 'init'
if (x > y).any():
out = m
return out
ret = test_cond(x, y)
print('ret:{}'.format(ret))
The variable or constant m
assigned to out
in if
branch and the variable or constant init
initially assigned to out
must have same data type.
The result is as follows:
ret:xx
Loop Statements
for Statements
Usage:
for i in sequence statements...
for i in sequence statements... if (cond) break
for i in sequence statements... if (cond) continue
Parameter: sequence
– Iterative sequences (Tuple
, List
, range
and so on).
Restrictions:
The total number of graph operations is a multiple of number of iterations of the
for
loop. Excessive number of iterations of thefor
loop may cause the graph to occupy more memory than usage limit.The
for...else...
statement is not supported.
Example:
from mindspore import ms_function, Tensor
import numpy as np
z = Tensor(np.ones((2, 3)))
@ms_function()
def test_cond():
x = (1, 2, 3)
for i in x:
z += i
return z
ret = test_cond()
print('ret:{}'.format(ret))
The result is as follows:
ret:[[7. 7. 7.]
[7. 7. 7.]]
while Statements
Usage:
while (cond) statements...
while (cond) statements... if (cond1) break
while (cond) statements... if (cond1) continue
Parameter: cond
– Variables of Bool
type and constants of Bool
, List
, Tuple
, Dict
and String
types are supported.
Restrictions:
If
cond
is not a constant, the variable or constant assigned to a same sign inside body ofwhile
and outside body ofwhile
should have same data type.If the data type of assigned variables or constants isTensor
, the variables and constants should have same shape and element type.The
while...else...
statement is not supported.If
cond
is not a constant, in while body, the data with type ofNumber
,List
,Tuple
are not allowed to update and the shape ofTensor
data are not allowed to change.The number of
while
cannot exceed 100.
Example 1:
from mindspore import ms_function
m = 1
n = 2
@ms_function()
def test_cond(x, y):
while x < y:
x += 1
return m
return n
ret = test_cond(1, 5)
print('ret:{}'.format(ret))
The data type of m
returned inside while
and data type of n
returned outside while
must have same data type.
The result is as follows:
ret:1
Example 2:
from mindspore import ms_function
m = 1
n = 2
def ops1(a, b):
return a + b
@ms_function()
def test_cond(x, y):
out = m
while x < y:
x += 1
out = ops1(out, x)
return out
ret = test_cond(1, 5)
print('ret:{}'.format(ret))
The variable op1
assigned to out
inside while
and the variable or constant init
initially assigned to out
must have same data type.
The result is as follows:
ret:15
Function Definition Statements
def Keyword
Defines functions.
Usage:
def function_name(args): statements...
For example:
from mindspore import ms_function
def number_add(x, y):
return x + y
@ms_function()
def test(x, y):
return number_add(x, y)
ret = test(1, 5)
print('ret:{}'.format(ret))
The result is as follows:
ret: 6
Restrictions:
The defined function must has
return
statement.Construct
function of the outermost network is not support kwargs, like:def construct(**kwargs):
.Mixed use of variable argument and non-variable argument is not supported, like:
def function(x, y, *args)
anddef function(x = 1, y = 1, **kwargs)
.
lambda Expression
Generates functions.
Usage: lambda x, y: x + y
For example:
from mindspore import ms_function
@ms_function()
def test(x, y):
number_add = lambda x, y: x + y
return number_add(x, y)
ret = test(1, 5)
print('ret:{}'.format(ret))
The result is as follows:
ret: 6
List Comprehension and Generator Expression
Support List Comprehension and Generator Expression.
List Comprehension
Generates a list. Own to the implicit converting during compiling, the result of expression is a tuple.
Usage: refer to Python official syntax description.
For example:
from mindspore import ms_function
@ms_function()
def test(x, y):
l = [x * x for x in range(1, 11) if x % 2 == 0]
return l
ret = test(1, 5)
print('ret:{}'.format(ret))
The result is as follows:
ret:(4, 16, 36, 64, 100)
Restrictions:
Use multiple nested iterations comprehension in the generator.
For example (Use two nested iterations):
l = [y for x in ((1, 2), (3, 4), (5, 6)) for y in x]
The result would be:
TypeError: The `generators` supports one `comprehension` in ListComp/GeneratorExp, but got 2 comprehensions.
Generator Expression
Generates a list. The same as List Comprehension. The expression would generate a list immediately, not like the behavior running in Python.
Usage: Referencing List Comprehension.
For example:
from mindspore import ms_function
@ms_function()
def test(x, y):
l = (x * x for x in range(1, 11) if x % 2 == 0)
return l
ret = test(1, 5)
print('ret:{}'.format(ret))
The result is as follows:
ret:(4, 16, 36, 64, 100)
Restrictions: The same as List Comprehension.
Functions
Python Built-in Functions
Currently, the following built-in Python functions are supported: len
, isinstance
, partial
, map
, range
, enumerate
, super
, pow
, and filter
.
len
Returns the length of a sequence.
Calling: len(sequence)
Input parameter: sequence
– Tuple
, List
, Dictionary
, or Tensor
.
Return value: length of the sequence, which is of the int
type. If the input parameter is Tensor
, the length of dimension 0 is returned.
For example:
from mindspore import ms_function, Tensor
import numpy as np
z = Tensor(np.ones((6, 4, 5)))
@ms_function()
def test():
x = (2, 3, 4)
y = [2, 3, 4]
d = {"a": 2, "b": 3}
x_len = len(x)
y_len = len(y)
d_len = len(d)
z_len = len(z)
return x_len, y_len, d_len, z_len
x_len, y_len, d_len, z_len = test()
print('x_len:{}'.format(x_len))
print('y_len:{}'.format(y_len))
print('d_len:{}'.format(d_len))
print('z_len:{}'.format(z_len))
The result is as follows:
x_len:3
y_len:3
d_len:2
z_len:6
isinstance
Determines whether an object is an instance of a class. Different from operator Isinstance
, the second input parameter of Isinstance
is the type defined in the dtype
module of MindSpore.
Calling: isinstance(obj, type)
Input parameters:
obj
– Any instance of any supported type.type
– A type in theMindSpore dtype
module.
Return value: If obj
is an instance of type
, return True
. Otherwise, return False
.
For example:
from mindspore import ms_function, Tensor
import numpy as np
z = Tensor(np.ones((6, 4, 5)))
@ms_function()
def test():
x = (2, 3, 4)
y = [2, 3, 4]
x_is_tuple = isinstance(x, tuple)
y_is_list = isinstance(y, list)
z_is_tensor = isinstance(z, Tensor)
return x_is_tuple, y_is_list, z_is_tensor
x_is_tuple, y_is_list, z_is_tensor = test()
print('x_is_tuple:{}'.format(x_is_tuple))
print('y_is_list:{}'.format(y_is_list))
print('z_is_tensor:{}'.format(z_is_tensor))
The result is as follows:
x_is_tuple:True
y_is_list:True
z_is_tensor:True
partial
A partial function used to fix the input parameter of the function.
Calling: partial(func, arg, ...)
Input parameters:
func
–Function.arg
– One or more parameters to be fixed. Position parameters and key-value pairs can be specified.
Return value: functions with certain input parameter values fixed
For example:
from mindspore import ms_function, ops
def add(x, y):
return x + y
@ms_function()
def test():
add_ = ops.partial(add, x=2)
m = add_(y=3)
n = add_(y=5)
return m, n
m, n = test()
print('m:{}'.format(m))
print('n:{}'.format(n))
The result is as follows:
m:5
n:7
map
Maps one or more sequences based on the provided functions and generates a new sequence based on the mapping result. If the number of elements in multiple sequences is inconsistent, the length of the new sequence is the same as that of the shortest sequence.
Calling: map(func, sequence, ...)
Input parameters:
func
–Function.sequence
– One or more sequences (Tuple
orList
).
Return value: A Tuple
For example:
from mindspore import ms_function
def add(x, y):
return x + y
@ms_function()
def test():
elements_a = (1, 2, 3)
elements_b = (4, 5, 6)
ret = map(add, elements_a, elements_b)
return ret
ret = test()
print('ret:{}'.format(ret))
The result is as follows:
ret: (5, 7, 9)
zip
Packs elements in the corresponding positions in multiple sequences into tuples, and then uses these tuples to form a new sequence. If the number of elements in each sequence is inconsistent, the length of the new sequence is the same as that of the shortest sequence.
Calling: zip(sequence, ...)
Input parameter: sequence
– One or more sequences (Tuple
or List
)`.
Return value: A Tuple
For example:
from mindspore import ms_function
@ms_function()
def test():
elements_a = (1, 2, 3)
elements_b = (4, 5, 6)
ret = zip(elements_a, elements_b)
return ret
ret = test()
print('ret:{}'.format(ret))
The result is as follows:
ret:((1, 4), (2, 5), (3, 6))
range
Creates a Tuple
based on the start value, end value, and step.
Calling:
range(start, stop, step)
range(start, stop)
range(stop)
Input parameters:
start
– start value of the count. The type isint
. The default value is 0.stop
– end value of the count (exclusive). The type isint
.step
– Step. The type isint
. The default value is 1.
Return value: A Tuple
For example:
from mindspore import ms_function
@ms_function()
def test():
x = range(0, 6, 2)
y = range(0, 5)
z = range(3)
return x, y, z
x, y, z = test()
print('x:{}'.format(x))
print('y:{}'.format(y))
print('z:{}'.format(z))
The result is as follows:
x:(0, 2, 4)
y:(0, 1, 2, 3, 4)
z:(0, 1, 2)
enumerate
Generates an index sequence of a sequence. The index sequence contains data and the corresponding subscript.
Calling:
enumerate(sequence, start)
enumerate(sequence)
Input parameters:
sequence
– A sequence (Tuple
,List
, orTensor
).start
– Start position of the subscript. The type isint
. The default value is 0.
Return value: A Tuple
For example:
from mindspore import ms_function, Tensor
import numpy as np
y = Tensor(np.array([[1, 2], [3, 4], [5, 6]]))
@ms_function()
def test():
x = (100, 200, 300, 400)
m = enumerate(x, 3)
n = enumerate(y)
return m, n
m, n = test()
print('m:{}'.format(m))
print('n:{}'.format(n))
The result is as follows:
m:((3, 100), (4, 200), (5, 300), (6, 400))
n:((0, Tensor(shape=[2], dtype=Int64, value= [1, 2])), (1, Tensor(shape=[2], dtype=Int64, value= [3, 4])), (2, Tensor(shape=[2], dtype=Int64, value= [5, 6])))
super
Calls a method of the parent class (super class). Generally, the method of the parent class is called after super
.
Calling:
super().xxx()
super(type, self).xxx()
Input parameters:
type
–Class.self
–Object.
Return value: method of the parent class.
For example:
from mindspore import nn
class FatherNet(nn.Cell):
def __init__(self, x):
super(FatherNet, self).__init__(x)
self.x = x
def construct(self, x, y):
return self.x * x
def test_father(self, x):
return self.x + x
class SingleSubNet(FatherNet):
def __init__(self, x, z):
super(SingleSubNet, self).__init__(x)
self.z = z
def construct(self, x, y):
ret_father_construct = super().construct(x, y)
ret_father_test = super(SingleSubNet, self).test_father(x)
return ret_father_construct, ret_father_test
pow
Returns the power.
Calling: pow(x, y)
Input parameters:
x
– Base number,Number
, orTensor
.y
– Power exponent,Number
, orTensor
.
Return value: y
power of x
, Number
, or Tensor
For example:
from mindspore import ms_function, Tensor
import numpy as np
x = Tensor(np.array([1, 2, 3]))
y = Tensor(np.array([1, 2, 3]))
@ms_function()
def test(x, y):
return pow(x, y)
ret = test(x, y)
print('ret:{}'.format(ret))
The result is as follows:
ret:[ 1 4 27]
print
Prints logs.
Calling: print(arg, ...)
Input parameter: arg
– Information to be printed (int
, float
, bool
, String
or Tensor
).
When the arg
is int
, float
, or bool
, it will be printed out as a 0-D
tensor.
Return value: none
For example:
from mindspore import ms_function, Tensor, dtype
import numpy as np
x = Tensor(np.array([1, 2, 3]), dtype.int32)
y = Tensor(3, dtype.int32)
@ms_function()
def test(x, y):
print(x)
print(y)
return x, y
ret = test(x, y)
The result is as follows:
Tensor(shape=[3], dtype=Int32, value= [1 2 3])
3
filter
According to the provided function to judge the elements of a sequence. Each element is passed into the function as a parameter in turn, and the elements whose return result is not 0 or False form a new sequence.
Calling: filter(func, sequence)
Input parameters:
func
– Function.sequence
– A sequence (Tuple
orList
).
Return value: A Tuple
.
For example:
from mindspore import ms_function
def is_odd(x):
if x % 2:
return True
return False
@ms_function()
def test():
elements = (1, 2, 3, 4, 5)
ret = filter(is_odd, elements)
return ret
ret = test()
print('ret:{}'.format(ret))
The result is as follows:
ret:(1, 3, 5)
Function Parameters
Default parameter value: The data types
int
,float
,bool
,None
,str
,tuple
,list
, anddict
are supported, whereasTensor
is not supported.Variable parameters: Inference and training of networks with variable parameters are supported.
Key-value pair parameter: Functions with key-value pair parameters cannot be used for backward propagation on computational graphs.
Variable key-value pair parameter: Functions with variable key-value pairs cannot be used for backward propagation on computational graphs.
Network Definition
Network Input parameters
The input parameters of the outermost network only can be lool
, int
, float
, Tensor
, None
, mstype.number(mstype.bool, mstype.int, mstype.float, mstype.uint)
, List
or Tuple
that contains these types, and Dictionary
whose values are these types.
While calculating gradient for outermost network, only Tensor
input could be calculated, input of other type will be ignored. For example, input parameter (x, y, z)
of outermost network, x
and z
are Tensor
type, y
is other type. While calculating gradient for the network, only gradients of x
and z
are calculated, and (grad_x, grad_y)
is returned.
If you want to use other types of input for the network, please transfer them to the network while initializing network in the __init__
function, and save them as network attributes, then use in the construct
.
The input parameters of inner network do not have this restriction.
For example:
from mindspore import nn, ops, Tensor
import numpy as np
class Net(nn.Cell):
def __init__(self, flag):
super(Net, self).__init__()
self.flag = flag
def construct(self, x, y, z):
if self.flag == "ok":
return x + y + z
return x - y - z
class GradNet(nn.Cell):
def __init__(self, net):
super(GradNet, self).__init__()
self.grad_all = ops.GradOperation(get_all=True)
self.forward_net = net
def construct(self, x, y, z):
return self.grad_all(self.forward_net)(x, y, z)
flag = "ok"
input_x = Tensor(np.ones((2, 3)).astype(np.float32))
input_y = 2
input_z = Tensor(np.ones((2, 3)).astype(np.float32) * 2)
net = Net(flag)
grad_net = GradNet(net)
ret = grad_net(input_x, input_y, input_z)
print('ret:{}'.format(ret))
The result is as follows:
ret:(Tensor(shape=[2, 3], dtype=Float32, value=
[[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00],
[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]), Tensor(shape=[2, 3], dtype=Float32, value=
[[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00],
[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]))
In the Net
defined above, string flag
is transferred during initialization and saved as attribute self.flag
, then used in the construct. The input parameter x
and z
are Tensor
, y
is int
. While grad_net
calculates gradient of the input parameters for the outermost network, gradient of y
is automatically ignored, only the gradient of x and z is calculated, ret = (grad_x, grad_z).
Instance Types on the Entire Network
Common Python function with the @ms_function decorator.
Cell subclass inherited from nn.Cell.
Network Construction Components
Category |
Content |
---|---|
|
mindspore/nn/* and user-defined Cell. |
Member function of a |
Member functions of other classes in the construct function of Cell can be called. |
|
Class decorated with @dataclass. |
|
|
|
|
|
Value computation operator generated by @constexpr. |
Function |
User-defined Python functions and system functions listed in the preceding content. |
Network Constraints
You are not allowed to modify non-
Parameter
data members of the network.For example:
from mindspore import nn, Tensor, Parameter import numpy as np class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.x = 2 self.par = Parameter(Tensor(np.ones((2, 3, 4))), name="par") def construct(self, x, y): self.par[0] = y self.x = x return x + y net = Net() net(1, 2)
In the preceding defined network,
self.x
is not aParameter
and cannot be modified.self.par
is aParameter
and can be modified.The result would be:
TypeError: 'self.x' should be initialized as a 'Parameter' type in the '__init__' function
When an undefined class member is used in the
construct
function,AttributeError
is not thrown like the Python interpreter. Instead, it is processed asNone
.For example:
from mindspore import nn class Net(nn.Cell): def __init__(self): super(Net, self).__init__() def construct(self, x): return x + self.y net = Net() net(1)
In the preceding defined network,
construct
uses the undefined class memberself.y
. In this case,self.y
is processed asNone
.The result would be:
RuntimeError: mindspore/ccsrc/frontend/operator/composite/multitype_funcgraph.cc:161 GenerateFromTypes] The 'add' operation does not support the type [Int64, kMetaTypeNone]