Function Differences with tf.data.Dataset.from_generator

View Source On Gitee

tf.data.Dataset.from_generator

@staticmethod
tf.data.Dataset.from_generator(
    generator,
    output_types,
    output_shapes=None,
    args=None
)

For more information, see tf.data.Dataset.from_generator.

mindspore.dataset.GeneratorDataset

class mindspore.dataset.GeneratorDataset(
    source,
    column_names=None,
    column_types=None,
    schema=None,
    num_samples=None,
    num_parallel_workers=1,
    shuffle=None,
    sampler=None,
    num_shards=None,
    shard_id=None,
    python_multiprocessing=True,
    max_rowsize=6
)

For more information, see mindspore.dataset.GeneratorDataset.

Differences

TensorFlow: A static method that creates Dataset from a callable object with the specified type and shape.

MindSpore: A dataset class that creates Dataset from a callable, iterable, or random-accessible object with the type and shape specified by schema.

Code Example

# The following implements GeneratorDataset with MindSpore.
import numpy as np
import mindspore.dataset as ds

def gen():
    for i in range(1, 3):
        yield np.array([i]), np.array([1] * i)

dataset = ds.GeneratorDataset(source=gen, column_names=["col1", "col2"])

for item in dataset.create_dict_iterator():
    print(item["col1"], item["col2"])
# [1] [1]
# [2] [1 1]

# The following implements from_generator with TensorFlow.
import tensorflow as tf
tf.compat.v1.enable_eager_execution()

def gen():
    for i in range(1, 3):
        yield i, [1] * i

dataset = tf.data.Dataset.from_generator(
    gen, (tf.int64, tf.int64), (tf.TensorShape([]), tf.TensorShape([None])))

for value in dataset:
    print(value)
# (1, array([1]))
# (2, array([1, 1]))