Function Differences with tf.train.MomentumOptimizer
tf.train.MomentumOptimizer
class tf.train.MomentumOptimizer(
learning_rate,
momentum,
use_locking=False,
name='Momentum',
nesterov=False
)
For more information, see tf.train.MomentumOptimizer.
mindspore.nn.Momentum
class mindspore.nn.Momentum(
params,
learning_rate
momentum,
weight_decay=0.0,
loss_scale=1.0,
use_nesterov=False
)(grads)
For more information, see mindspore.nn.Momentum.
Differences
TensorFlow: Using the same learning rate for all parameters and it is impossible to use different learning rates for different parameter groups.
MindSpore: Using the same learning rate for all parameters and different values for different parameter groups is supported.
Code Example
# The following implements Momentum with MindSpore.
import tensorflow as tf
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore import Model
net = Net()
#1) All parameters use the same learning rate and weight decay
optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
#2) Use parameter groups and set different values
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
group_params = [{'params': conv_params, 'weight_decay': 0.01, 'grad_centralization':True},
{'params': no_conv_params, 'lr': 0.01},
{'order_params': net.trainable_params()}]
optim = nn.Momentum(group_params, learning_rate=0.1, weight_decay=0.0)
# The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01 and grad
# centralization of True.
# The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0 and grad
# centralization of False.
# The final parameters order in which the optimizer will be followed is the value of 'order_params'.
loss = nn.SoftmaxCrossEntropyWithLogits()
model = Model(net, loss_fn=loss, optimizer=optim)
# The following implements MomentumOptimizer with TensorFlow.
image = tf.keras.layers.Input(shape=(28, 28, 1))
model = tf.keras.models.Model(image, net)
optim = tf.train.MomentumOptimizer(learning_rate=0.1, momentum=0.9)
loss = tf.keras.losses.BinaryCrossentropy()
model.compile(optimizer=optim, loss=loss, metrics=['accuracy'])