mindspore.dataset.vision.py_transforms.AutoContrast
- class mindspore.dataset.vision.py_transforms.AutoContrast(cutoff=0.0, ignore=None)[source]
Maximize (normalize) contrast of the input PIL Image.
It will first calculate a histogram of the input image, remove cutoff percent of the lightest and darkest pixels from the histogram, then remap the pixel value to [0, 255], making the darkest pixel black and the lightest pixel white.
- Parameters
- Raises
TypeError – If cutoff is not of type float.
TypeError – If ignore is not of type int or sequence.
ValueError – If cutoff is not in range [0, 50.0).
ValueError – If ignore is not in range [0, 255].
RuntimeError – If shape of the input image is not <H, W> or <H, W, C>.
- Supported Platforms:
CPU
Examples
>>> from mindspore.dataset.transforms.py_transforms import Compose >>> >>> transforms_list = Compose([py_vision.Decode(), ... py_vision.AutoContrast(), ... py_vision.ToTensor()]) >>> # apply the transform to dataset through map function >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns="image")