mindspore.dataset.audio.transforms.LowpassBiquad
- class mindspore.dataset.audio.transforms.LowpassBiquad(sample_rate, cutoff_freq, Q=0.707)[source]
Design two-pole low-pass filter for audio waveform.
A low-pass filter passes frequencies lower than a selected cutoff frequency but attenuates frequencies higher than it. The system function is:
\[H(s) = \frac{1}{s^2 + \frac{s}{Q} + 1}\]Similar to SoX implementation.
Note
The dimension of the audio waveform to be processed needs to be (…, time).
- Parameters
sample_rate (int) – Sampling rate (in Hz), which can’t be zero.
cutoff_freq (float) – Filter cutoff frequency (in Hz).
Q (float, optional) – Quality factor , in range of (0, 1]. Default: 0.707.
- Raises
TypeError – If sample_rate is not of type integer.
ValueError – If sample_rate is 0.
TypeError – If cutoff_freq is not of type float.
TypeError – If Q is not of type float.
ValueError – If Q is not in range of (0, 1].
RuntimeError – If input tensor is not in shape of <…, time>.
- Supported Platforms:
CPU
Examples
>>> import numpy as np >>> >>> waveform = np.array([[0.8236, 0.2049, 0.3335], [0.5933, 0.9911, 0.2482], ... [0.3007, 0.9054, 0.7598], [0.5394, 0.2842, 0.5634], [0.6363, 0.2226, 0.2288]]) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"]) >>> transforms = [audio.LowpassBiquad(4000, 1500, 0.7)] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])