# Differences with torchaudio.transforms.Spectrogram [](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Spectrogram.md) ## torchaudio.transforms.Spectrogram ```python class torchaudio.transforms.Spectrogram(n_fft: int = 400, win_length: Optional[int] = None, hop_length: Optional[int] = None, pad: int = 0, window_fn: Callable[[...], torch.Tensor] = <built-in method hann_window of type object>, power: Optional[float] = 2.0, normalized: bool = False, wkwargs: Optional[dict] = None, center: bool = True, pad_mode: str = 'reflect', onesided: bool = True) ``` For more information, see [torchaudio.transforms.Spectrogram](https://pytorch.org/audio/0.8.0/transforms.html#torchaudio.transforms.Spectrogram.html). ## mindspore.dataset.audio.Spectrogram ```python class mindspore.dataset.audio.Spectrogram(n_fft=400, win_length=None, hop_length=None, pad=0, window=WindowType.HANN, power=2.0, normalized=False, center=True, pad_mode=BorderType.REFLECT, onesided=True) ``` For more information, see [mindspore.dataset.audio.Spectrogram](https://mindspore.cn/docs/en/master/api_python/dataset_audio/mindspore.dataset.audio.Spectrogram.html#mindspore.dataset.audio.Spectrogram). ## Differences PyTorch: Compute waveform from a linear scale magnitude spectrogram. Customized window function and different parameter configs for window function are both supported. MindSpore: Compute waveform from a linear scale magnitude spectrogram. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | n_fft | n_fft | - | | | Parameter2 | win_length | win_length | - | | | Parameter3 | hop_length | hop_length | - | | | Parameter4 | pad | pad | - | | | Parameter5 | window_fn | window | MindSpore only supports 5 window functions | | | Parameter6 | power | power | - | | | Parameter7 | normalized | normalized | - | | | Parameter8 | wkwargs | - | Arguments for window function, not supported by MindSpore | | | Parameter9 | center | center | - | | | Parameter10 | pad_mode | pad_mode | - | | | Parameter11 | onesided | onesided | - | ## Code Example ```python import numpy as np fake_input = np.array([[[1, 1, 2, 2, 3, 3, 4]]]).astype(np.float32) # PyTorch import torch import torchaudio.transforms as T transformer = T.Spectrogram(n_fft=8, window_fn=torch.hamming_window) torch_result = transformer(torch.from_numpy(fake_input)) print(torch_result) # Out: tensor([[[[3.5874e+01, 1.3237e+02], # [1.8943e+00, 3.2839e+01], # [8.4640e-01, 2.1553e-01], # [2.0643e-02, 2.4623e-01], # [6.5697e-01, 1.2876e+00]]]]) # MindSpore import mindspore.dataset.audio as audio transformer = audio.Spectrogram(n_fft=8, window=audio.WindowType.HAMMING) ms_result = transformer(fake_input) print(ms_result) # Out: [[[[3.5873653e+01 1.3237122e+02] # [1.8942689e+00 3.2838711e+01] # [8.4640014e-01 2.1552797e-01] # [2.0642618e-02 2.4623220e-01] # [6.5697211e-01 1.2876146e+00]]]] ```