# Differences with torch.utils.data.SequentialSampler [](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SequentialSampler.md) ## torch.utils.data.SequentialSampler ```python class torch.utils.data.SequentialSampler(data_source) ``` For more information, see [torch.utils.data.SequentialSampler](https://pytorch.org/docs/1.8.1/data.html#torch.utils.data.SequentialSampler). ## mindspore.dataset.SequentialSampler ```python class mindspore.dataset.SequentialSampler(start_index=None, num_samples=None) ``` For more information, see [mindspore.dataset.SequentialSampler](https://mindspore.cn/docs/en/master/api_python/dataset/mindspore.dataset.SequentialSampler.html). ## Differences PyTorch: Samples elements sequentially. MindSpore: Samples elements sequentially. Support for specifying sequential indexing and sample size. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | data_source | - | Dataset object to be sampled. MindSpore does not need this parameter. | | | Parameter2 | - | start_index | Index to start sampling at | | | Parameter3 | - | num_samples | Specify the number of samples returned by the sampler | ## Code Example ```python import torch from torch.utils.data import SequentialSampler class MyMapDataset(torch.utils.data.Dataset): def __init__(self): super(MyMapDataset).__init__() self.data = [i for i in range(4)] def __getitem__(self, index): return self.data[index] def __len__(self): return len(self.data) ds = MyMapDataset() sampler = SequentialSampler(ds) dataloader = torch.utils.data.DataLoader(ds, sampler=sampler) for data in dataloader: print(data) # Out: # tensor([0]) # tensor([1]) # tensor([2]) # tensor([3]) ``` ```python import mindspore as ms from mindspore.dataset import SequentialSampler class MyMapDataset(): def __init__(self): super(MyMapDataset).__init__() self.data = [i for i in range(4)] def __getitem__(self, index): return self.data[index] def __len__(self): return len(self.data) ds = MyMapDataset() sampler = SequentialSampler() dataloader = ms.dataset.GeneratorDataset(ds, column_names=["data"], sampler=sampler) for data in dataloader: print(data) # Out: # [Tensor(shape=[], dtype=Int64, value= 0)] # [Tensor(shape=[], dtype=Int64, value= 1)] # [Tensor(shape=[], dtype=Int64, value= 2)] # [Tensor(shape=[], dtype=Int64, value= 3)] ```