# Differences with torchvision.datasets.ImageFolder [](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ImageFolder.md) ## torchvision.datasets.ImageFolder ```python class torchvision.datasets.ImageFolder( root: str, transform: Optional[Callable] = None, target_transform: Union[Callable, NoneType] = None, loader: Optional[Callable] = None, is_valid_file: bool = None) ``` For more information, see [torchvision.datasets.ImageFolder](https://pytorch.org/vision/0.9/datasets.html#torchvision.datasets.ImageFolder). ## mindspore.dataset.ImageFolderDataset ```python class mindspore.dataset.ImageFolderDataset( dataset_dir, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, extensions=None, class_indexing=None, decode=False, num_shards=None, shard_id=None, cache=None, decrypt=None) ``` For more information, see [mindspore.dataset.ImageFolderDataset](https://mindspore.cn/docs/en/master/api_python/dataset/mindspore.dataset.ImageFolderDataset.html#mindspore.dataset.ImageFolderDataset). ## Differences PyTorch: A source dataset that reads images from a tree of directories. API integrates the transformation operations for image and label. File Loader can be specified. MindSpore: A source dataset that reads images from a tree of directories. Transforms for image and label depends on `mindshare.dataset.map` operation. File Loader can not be specified. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | root | dataset_dir | - | | | Parameter2 | transform | - | Supported by `mindspore.dataset.map` operation | | | Parameter3 | target_transform | - | Supported by `mindspore.dataset.map` operation | | | Parameter4 | loader | - | Not supported by MindSpore | | | Parameter5 | is_valid_file | - | Not supported by MindSpore | | | Parameter6 | - | num_samples | The number of images to be included in the dataset | | | Parameter7 | - | num_parallel_workers | Number of worker threads to read the data | | | Parameter8 | - | shuffle | Whether to perform shuffle on the dataset | | | Parameter9 | - | sampler | Object used to choose samples from the dataset | | | Parameter10 | - | extensions | List of file extensions to be included in the dataset | | | Parameter11 | - | class_indexing | A str-to-int mapping from folder name to index | | | Parameter12 | - | decode | Whether to decode the images after reading | | | Parameter13 | - | num_shards | Number of shards that the dataset will be divided into | | | Parameter14 | - | shard_id | The shard ID within num_shards | | | Parameter15 | - | cache | Use tensor caching service to speed up dataset processing | | | Parameter16 | - | decrypt | Image decryption function | ## Code Example Assume that we have a directory with the following structure: ```text imageset/ ├── cat │ ├── cat_0.jpg │ ├── cat_1.jpg │ └── cat_2.jpg ├── fish │ ├── fish_0.jpg │ ├── fish_1.jpg │ ├── fish_2.jpg │ └── fish_3.jpg ├── fruits │ ├── fruits_0.jpg │ ├── fruits_1.jpg │ └── fruits_2.jpg ├── plane │ ├── plane_0.jpg │ ├── plane_1.jpg │ └── plane_2.jpg └── tree ├── tree_0.jpg ├── tree_1.jpg └── tree_2.jpg ``` ```python # Torch import torchvision.transforms as T import torchvision.datasets as datasets from torch.utils.data import DataLoader root = "/path/to/imageset/" dataset = datasets.ImageFolder(root, transform=T.RandomCrop((256, 256))) dataloader = DataLoader(dataset) # MindSpore import mindspore.dataset as ds import mindspore.dataset.vision as vision root = "/path/to/imageset/" ms_dataloader = ds.ImageFolderDataset(root, decode=True) ms_dataloader = ms_dataloader.map(vision.RandomCrop((256, 256)), ["image"]) ```