# Differences with torch.torchvision.datasets.CocoDetection [](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CocoDataset.md) ## torchvision.datasets.CocoDetection ```python class torchvision.datasets.CocoDetection( root: str, annFile: str, transform: Optional[Callable]=None, target_transform: Optional[Callable]=None, transforms: Optional[Callable]=None ) ``` For more information, see [torchvision.datasets.CocoDetection](https://pytorch.org/vision/0.9/datasets.html#torchvision.datasets.CocoDetection). ## mindspore.dataset.CocoDataset ```python class mindspore.dataset.CocoDataset( dataset_dir, annotation_file, task="Detection", num_samples=None, num_parallel_workers=None, shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None, cache=None, extra_metadata=False, decrypt=None ) ``` For more information, see [mindspore.dataset.CocoDataset](https://mindspore.cn/docs/en/master/api_python/dataset/mindspore.dataset.CocoDataset.html#mindspore.dataset.CocoDataset). ## Differences PyTorch: Input the COCO dataset, and return the created dataset object, which can be traversed to obtain data. MindSpore: Input the COCO dataset and a specified task type (target detection, panorama segmentation, etc.), and return a dataset object with the given task type, which can be obtained by creating an iterator. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | root | dataset_dir | - | | | Parameter2 | annFile | annotation_file |- | | | Parameter3 | transform | - | Supported by `mindspore.dataset.map` operation | | | Parameter4 | target_transform | - | Supported by `mindspore.dataset.map` operation | | | Parameter5 | transforms | - | Supported by `mindspore.dataset.map` operation | | | Parameter6 | - | task | Set the task type for reading COCO data | | | Parameter7 | - | num_samples | The number of images to be included in the dataset | | | Parameter8 | - | num_parallel_workers | Number of worker threads to read the data | | | Parameter9 | - | shuffle | Whether to perform shuffle on the dataset | | | Parameter10 | - | decode | Whether to decode the images after reading | | | Parameter11 | - | sampler | Object used to choose samples from the dataset | | | Parameter12 | - | num_shards | Number of shards that the dataset will be divided into | | | Parameter13 | - | shard_id | The shard ID within num_shards | | | Parameter14 | - | cache | Use tensor caching service to speed up dataset processing | | | Parameter15 | - | extra_metadata | Flag to add extra meta-data to row | | | Parameter16 | - | decrypt | Image decryption function | ## Code Example ```python import mindspore.dataset as ds import torchvision.datasets as datasets import torchvision.transforms as T # In MindSpore, CocoDataset supports four kinds of tasks, which are Object Detection, Keypoint Detection, Stuff Segmentation and Panoptic Segmentation of 2017 Train/Val/Test dataset. coco_dataset_dir = "/path/to/coco_dataset_directory/images" coco_annotation_file = "/path/to/coco_dataset_directory/annotation_file" # Read COCO data for Detection task. Output columns: [image, dtype=uint8], [bbox, dtype=float32], [category_id, dtype=uint32], [iscrowd, dtype=uint32] dataset = ds.CocoDataset( dataset_dir=coco_dataset_dir, annotation_file=coco_annotation_file, task='Detection', decode=True, shuffle=False, extra_metadata=True) dataset = dataset.rename("_meta-filename", "filename") file_name = [] bbox = [] category_id = [] iscrowd = [] for data in dataset.create_dict_iterator(num_epochs=1, output_numpy=True): file_name.append(data["filename"]) bbox.append(data["bbox"]) category_id.append(data["category_id"]) iscrowd.append(data["iscrowd"]) print(file_name[0]) print(bbox[0]) print(category_id[0]) print(iscrowd[0]) # out: # 000000391895 # [[10. 10. 10. 10.] # [70. 70. 70. 70.]] # [[1] # [7]] # [[0] # [0]] # In torch, the output will be result of transform, eg. Tensor root = "/path/to/coco_dataset_directory/images" annFile = "/path/to/coco_dataset_directory/annotation_file" # Convert a PIL Image or numpy.ndarray to tensor. dataset = datasets.CocoDetection(root, annFile, transform=T.ToTensor()) for item in dataset: print("item:", item[0]) break # out: # loading annotations into memory... # Done (t=0.00s) # creating index... # index created! # item: tensor([[[0.8588, 0.8549, 0.8549, ..., 0.7529, 0.7529, 0.7529, # [0.8549, 0.8549, 0.8510, ..., 0.7529, 0.7529, 0.7529], # [0.8549, 0.8510, 0.8510, ..., 0.7529, 0.7529, 0.7529], # ..., # # ..., # [0.8471, 0.8510, 0.8549, ..., 0.7412, 0.7333, 0.7294], # [0.8549, 0.8549, 0.8549, ..., 0.7412, 0.7333, 0.7294], # [0.8627, 0.8627, 0.8549, ..., 0.7412, 0.7333, 0.7294]]]) ```