# Differences with torchvision.datasets.Cityscapes [](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Cityscapes.md) ## torchvision.datasets.Cityscapes ```python class torchvision.datasets.Cityscapes( root: str, split: str, mode: str, target_type: str or list, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, transforms: Optional[Callable] = None ) ``` For more information, see [torchvision.datasets.Cityscapes](https://pytorch.org/vision/0.9/datasets.html#cityscapes). ## mindspore.dataset.CityscapesDataset ```python class mindspore.dataset.CityscapesDataset( dataset_dir, usage='train', quality_mode='fine', task='instance', num_samples=None, num_parallel_workers=None, shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None, cache=None ) ``` For more information, see [mindspore.dataset.CityscapesDataset](https://www.mindspore.cn/docs/en/master/api_python/dataset/mindspore.dataset.CityscapesDataset.html). ## Differences PyTorch: Read the Cityscapes dataset. MindSpore: Read the Cityscapes dataset. Downloading dataset from web is not supported. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | root | dataset_dir | - | | | Parameter2 | split | usage | - | | | Parameter3 | mode | quality_mode | - | | | Parameter4 | target_type | task | - | | | Parameter5 | transform | - | Supported by `mindspore.dataset.map` operation | | | Parameter6 | target_transform | - | Supported by `mindspore.dataset.map` operation | | | Parameter7 | transforms | - | Supported by `mindspore.dataset.map` operation | | | Parameter8 | - | num_samples | The number of images to be included in the dataset. | | | Parameter9 | - | num_parallel_workers | Number of worker threads to read the data | | | Parameter10 | - | shuffle | Whether to perform shuffle on the dataset | | | Parameter11 | - | decode | Decode the images after reading | | | Parameter12 | - | sampler | Object used to choose samples from the dataset | | | Parameter13 | - | num_shards | Number of shards that the dataset will be divided into | | | Parameter14 | - | shard_id | The shard ID within num_shards | | | Parameter15 | - | cache | Use tensor caching service to speed up dataset processing | ## Code Example ```python # PyTorch import torchvision.transforms as T import torchvision.datasets as datasets from torch.utils.data import DataLoader root = "/path/to/dataset_directory/" dataset = datasets.Cityscapes(root, split='train', mode='fine', target_type='semantic') dataloader = DataLoader(dataset) # MindSpore import mindspore.dataset as ds import mindspore.dataset.vision as vision # Download the dataset files, unzip into the following structure # . # └── "/path/to/dataset_directory" # ├── leftImg8bit # | ├── train # | | ├── aachen # | | | ├── aachen_000000_000019_leftImg8bit.png # | | | ├── aachen_000001_000019_leftImg8bit.png # | | | ├── ... # | | ├── bochum # | | | ├── ... # | | ├── ... # | ├── test # | | ├── ... # | ├── val # | | ├── ... # └── gtFine # ├── train # | ├── aachen # | | ├── aachen_000000_000019_gtFine_color.png # | | ├── aachen_000000_000019_gtFine_instanceIds.png # | | ├── aachen_000000_000019_gtFine_labelIds.png # | | ├── aachen_000000_000019_gtFine_polygons.json # | | ├── aachen_000001_000019_gtFine_color.png # | | ├── aachen_000001_000019_gtFine_instanceIds.png # | | ├── aachen_000001_000019_gtFine_labelIds.png # | | ├── aachen_000001_000019_gtFine_polygons.json # | | ├── ... # | ├── bochum # | | ├── ... # | ├── ... # ├── test # | ├── ... # └── val # ├── ... root = "/path/to/dataset_directory/" ms_dataloader = ds.CityscapesDataset(root, usage='train') ms_dataloader = ms_dataloader.map(vision.RandomCrop((28, 28)), ["image"]) ```