Source code for mindspore.ops.function.sparse_unary_func

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""sparse unary function api"""

from mindspore.common import CSRTensor, COOTensor
from mindspore.ops.composite.multitype_ops._constexpr_utils import raise_type_error
from mindspore.ops.function import math_func, nn_func


[docs]def csr_cos(x: CSRTensor) -> CSRTensor: r""" Computes cosine of input element-wise. .. math:: out_i = \cos(x_i) .. warning:: Currently support data types float16 and float32. If use float64, there may be a problem of missing precision. Args: x (CSRTensor): Input CSRTensor. Returns: CSRTensor, has the same shape and dtype as `x`. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is not float16, float32 or float64, complex64, complex128. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_cos(x) >>> print(output.values) [ 0.5403023 -0.41614684] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_cos') return CSRTensor(x.indptr, x.indices, math_func.cos(x.values), x.shape)
[docs]def coo_cos(x: COOTensor) -> COOTensor: r""" Computes cosine of input element-wise. .. math:: out_i = \cos(x_i) .. warning:: If use float64, there may be a problem of missing precision. Args: x (COOTensor): Input COOTensor. Returns: COOTensor, has the same shape and dtype as `x`. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is not float16, float32 or float64, complex64, complex128. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_cos(x) >>> print(output.values) [ 0.5403023 -0.41614684] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_cos') return COOTensor(x.indices, math_func.cos(x.values), x.shape)
[docs]def csr_tan(x: CSRTensor) -> CSRTensor: r""" Computes tangent of `x` element-wise. .. math:: out_i = \tan(x_i) Args: x (CSRTensor): The input CSRTensor. Returns: CSRTensor, has the same shape as `x`. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_tan(x) >>> print(output.values) [-1.5574077 -2.1850398] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_tan') return CSRTensor(x.indptr, x.indices, math_func.tan(x.values), x.shape)
[docs]def coo_tan(x: COOTensor) -> COOTensor: r""" Computes tangent of `x` element-wise. .. math:: out_i = \tan(x_i) Args: x (COOTensor): The input COOTensor. Returns: COOTensor, has the same shape as `x`. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_tan(x) >>> print(output.values) [-1.5574077 -2.1850398] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_tan') return COOTensor(x.indices, math_func.tan(x.values), x.shape)
[docs]def csr_exp(x: CSRTensor) -> CSRTensor: """ Returns csr_exponential of a CSRTensor element-wise. .. math:: out_i = e^{x_i} Args: x (CSRTensor): The input CSRTensor. Returns: CSRTensor, has the same shape and dtype as the `x`. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_exp(x) >>> print(output.values) [0.36787948 7.3890557 ] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_exp') return CSRTensor(x.indptr, x.indices, math_func.exp(x.values), x.shape)
[docs]def coo_exp(x: COOTensor) -> COOTensor: """ Returns the element-wise exponential of a COOTensor. .. math:: out_i = e^{x_i} Args: x (COOTensor): The input COOTensor. Returns: COOTensor, has the same shape and dtype as the `x`. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_exp(x) >>> print(output.values) [0.36787948 7.3890557 ] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_exp') return COOTensor(x.indices, math_func.exp(x.values), x.shape)
[docs]def csr_inv(x: CSRTensor) -> CSRTensor: r""" Computes Reciprocal of input CSRTensor element-wise. .. math:: out_i = \frac{1}{x_{i} } Args: x (CSRTensor): Input CSRTensor. Must be one of the following types: float16, float32 or int32. Returns: CSRTensor, has the same type and shape as input shape value. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is not one of float16, float32, int32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_inv(x) >>> print(output.values) [-1. 0.5] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_inv') return CSRTensor(x.indptr, x.indices, math_func.inv(x.values), x.shape)
[docs]def coo_inv(x: COOTensor) -> COOTensor: r""" Computes Reciprocal of input COOTensor element-wise. .. math:: out_i = \frac{1}{x_{i} } Args: x (COOTensor): Input COOTensor. Must be one of the following types: float16, float32 or int32. Returns: COOTensor, has the same type and shape as input shape value. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is not one of float16, float32, int32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_inv(x) >>> print(output.values) [-1. 0.5] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_inv') return COOTensor(x.indices, math_func.inv(x.values), x.shape)
[docs]def csr_relu(x: CSRTensor) -> CSRTensor: r""" Computes ReLU (Rectified Linear Unit activation function) of input csr_tensors element-wise. It returns max(x, 0) element-wise. Specially, the neurons with the negative output will be suppressed and the active neurons will stay the same. .. math:: ReLU(x) = (x)^+ = \max(0, x) Args: x (CSRTensor): Input CSRTensor. Returns: CSRTensor, with the same dtype and shape as the `x`. Raises: TypeError: If dtype of `x` is not a number. TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_relu(x) >>> print(output.values) [0. 2.] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_relu') return CSRTensor(x.indptr, x.indices, nn_func.relu(x.values), x.shape)
[docs]def coo_relu(x: COOTensor) -> COOTensor: r""" Computes ReLU (Rectified Linear Unit activation function) of input coo_tensors element-wise. It returns :math:`\max(x,\ 0)` element-wise. Specially, the neurons with the negative output will be suppressed and the active neurons will stay the same. .. math:: ReLU(x) = (x)^+ = \max(0, x) Args: x (COOTensor): Input COOTensor with shape :math:`(N, *)`, where :math:`*` means any number of additional dimensions. Its dtype is `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_. Returns: COOTensor, has the same shape and dtype as the `x`. Raises: TypeError: If dtype of `x` is not a number. TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_relu(x) >>> print(output.values) [0. 2.] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_relu') return COOTensor(x.indices, nn_func.relu(x.values), x.shape)
[docs]def csr_expm1(x: CSRTensor) -> CSRTensor: """ Returns exponential then minus 1 of a CSRTensor element-wise. .. math:: out_i = e^{x_i} - 1 Args: x (CSRTensor): The input CSRTensor with a dtype of float16 or float32. Returns: CSRTensor, has the same shape as the `x`. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_expm1(x) >>> print(output.values) [-0.63212055 6.389056 ] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_expm1') return CSRTensor(x.indptr, x.indices, math_func.expm1(x.values), x.shape)
[docs]def coo_expm1(x: COOTensor) -> COOTensor: """ Returns exponential then minus 1 of a COOTensor element-wise. .. math:: out_i = e^{x_i} - 1 Args: x (COOTensor): The input COOTensor with a dtype of float16 or float32. Returns: COOTensor, has the same shape as the `x`. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_expm1(x) >>> print(output.values) [-0.63212055 6.389056 ] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_expm1') return COOTensor(x.indices, math_func.expm1(x.values), x.shape)
[docs]def csr_isfinite(x: CSRTensor) -> CSRTensor: r""" Determines which elements are finite for each position. .. math:: out_i = \begin{cases} & \text{ if } x_{i} = \text{Finite},\ \ True \\ & \text{ if } x_{i} \ne \text{Finite},\ \ False \end{cases} Args: x (CSRTensor): The input CSRTensor. Returns: CSRTensor, has the same shape of input, and the dtype is bool. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_isfinite(x) >>> print(output.values) [ True True] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_isfinite') return CSRTensor(x.indptr, x.indices, math_func.isfinite(x.values), x.shape)
[docs]def coo_isfinite(x: COOTensor) -> COOTensor: r""" Determines which elements are finite for each position. .. math:: out_i = \begin{cases} & \text{ if } x_{i} = \text{Finite},\ \ True\ \\ & \text{ if } x_{i} \ne \text{Finite},\ \ False \end{cases} Args: x (COOTensor): The input COOTensor. Returns: COOTensor, has the same shape of input, and the dtype is bool. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_isfinite(x) >>> print(output.values) [ True True] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_isfinite') return COOTensor(x.indices, math_func.isfinite(x.values), x.shape)
[docs]def csr_asin(x: CSRTensor) -> CSRTensor: r""" Computes arcsine of input csr_tensors element-wise. .. math:: out_i = \sin^{-1}(x_i) Args: x (CSRTensor): Input CSRTensor. The data types should be one of the following types: float16, float32, float64. Returns: CSRTensor, has the same shape and dtype as `x`. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is not float16, float32, float64. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_asin(x) >>> print(output.values) [-1.5707964 nan] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_asin') return CSRTensor(x.indptr, x.indices, math_func.asin(x.values), x.shape)
[docs]def coo_asin(x: COOTensor) -> COOTensor: r""" Computes arcsine of input coo_tensors element-wise. .. math:: out_i = \sin^{-1}(x_i) Args: x (COOTensor): Input COOTensor. The shape of COOTensor is :math:`(N,*)` , where :math:`*` means any number of additional dimensions. The data type should be one of the following types: float16, float32, float64, complex64, complex128. Returns: COOTensor, has the same shape and dtype as `x`. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is not float16, float32, float64, complex64, complex128. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_asin(x) >>> print(output.values) [-1.5707964 nan] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_asin') return COOTensor(x.indices, math_func.asin(x.values), x.shape)
[docs]def csr_sqrt(x: CSRTensor) -> CSRTensor: r""" Returns sqrt of a CSRTensor element-wise. .. math:: out_{i} = \sqrt{x_{i}} Args: x (CSRTensor): The input CSRTensor with a dtype of Number. Returns: CSRTensor, has the same shape and dtype as the `x`. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_sqrt(x) >>> print(output.values) [ nan 1.4142135] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_sqrt') return CSRTensor(x.indptr, x.indices, math_func.sqrt(x.values), x.shape)
[docs]def coo_sqrt(x: COOTensor) -> COOTensor: r""" Returns sqrt of a COOTensor element-wise. .. math:: out_{i} = \sqrt{x_{i}} Args: x (COOTensor): The input COOTensor with a dtype of Number. Returns: COOTensor, has the same shape and dtype as the `x`. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_sqrt(x) >>> print(output.values) [ nan 1.4142135] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_sqrt') return COOTensor(x.indices, math_func.sqrt(x.values), x.shape)
[docs]def csr_log(x: CSRTensor) -> CSRTensor: r""" Returns the natural logarithm of a CSRTensor element-wise. .. math:: y_i = \log_e(x_i) .. warning:: If the input value of operator Log is within the range (0, 0.01] or [0.95, 1.05], the output accuracy may be affacted. Args: x (CSRTensor): The value must be greater than 0. Returns: CSRTensor, has the same shape and dtype as the `x`. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is not float16, float32 or float64 on GPU and CPU. TypeError: If dtype of `x` is not float16 or float32 on Ascend. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_log(x) >>> print(output.values) [ nan 0.69314575] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_log') return CSRTensor(x.indptr, x.indices, math_func.log(x.values), x.shape)
[docs]def coo_log(x: COOTensor) -> COOTensor: r""" Returns the natural logarithm of a COOTensor element-wise. .. math:: y_i = \log_e(x_i) .. warning:: If the input value of operator Log is within the range (0, 0.01] or [0.95, 1.05], the output accuracy may be affacted. Args: x (COOTensor): The value must be greater than 0. Returns: COOTensor, has the same shape and dtype as the `x`. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is not float16, float32 or float64 on GPU and CPU. TypeError: If dtype of `x` is not float16 or float32 on Ascend. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_log(x) >>> print(output.values) [ nan 0.69314575] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_log') return COOTensor(x.indices, math_func.log(x.values), x.shape)
[docs]def csr_isnan(x: CSRTensor) -> CSRTensor: r""" Determines which elements are NaN for each position. .. math:: out_i = \begin{cases} & \ True,\ \text{ if } x_{i} = \text{Nan} \\ & \ False,\ \text{ if } x_{i} \ne \text{Nan} \end{cases} where :math:`Nan` means not a number. Args: x (CSRTensor): The input CSRTensor. Returns: CSRTensor, has the same shape of input, and the dtype is bool. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_isnan(x) >>> print(output.values) [False False] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_isnan') return CSRTensor(x.indptr, x.indices, math_func.isnan(x.values), x.shape)
[docs]def coo_isnan(x: COOTensor) -> COOTensor: r""" Determines which elements are NaN for each position. .. math:: out_i = \begin{cases} & \ True,\ \text{ if } x_{i} = \text{Nan} \\ & \ False,\ \text{ if } x_{i} \ne \text{Nan} \end{cases} where :math:`Nan` means not a number. Args: x (COOTensor): The input COOTensor. Returns: COOTensor, has the same shape of input, and the dtype is bool. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_isnan(x) >>> print(output.values) [False False] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_isnan') return COOTensor(x.indices, math_func.isnan(x.values), x.shape)
[docs]def csr_acos(x: CSRTensor) -> CSRTensor: r""" Computes arccosine of input csr_tensors element-wise. .. math:: out_i = \cos^{-1}(x_i) Args: x (CSRTensor): Input CSRTensor. Returns: CSRTensor, has the same shape and dtype as `x`. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is not float16, float32 or float64, complex64, complex128. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_acos(x) >>> print(output.values) [3.1415927 nan] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_acos') return CSRTensor(x.indptr, x.indices, math_func.acos(x.values), x.shape)
[docs]def coo_acos(x: COOTensor) -> COOTensor: r""" Computes arccosine of input coo_tensors element-wise. .. math:: out_i = \cos^{-1}(x_i) Args: x (COOTensor): Input COOTensor. Returns: COOTensor, has the same shape and dtype as `x`. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is not float16, float32 or float64. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_acos(x) >>> print(output.values) [3.1415927 nan] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_acos') return COOTensor(x.indices, math_func.acos(x.values), x.shape)
[docs]def csr_floor(x: CSRTensor) -> CSRTensor: r""" Rounds a CSRTensor down to the closest integer element-wise. .. math:: out_i = \lfloor x_i \rfloor Args: x (CSRTensor): The input CSRTensor, its data type must be float16, float32 or float64. Returns: CSRTensor, has the same shape as `x`. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is not in [float16, float32, float64]. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_floor(x) >>> print(output.values) [-1. 2.] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_floor') return CSRTensor(x.indptr, x.indices, math_func.floor(x.values), x.shape)
[docs]def coo_floor(x: COOTensor) -> COOTensor: r""" Rounds a COOTensor down to the closest integer element-wise. .. math:: out_i = \lfloor x_i \rfloor Args: x (COOTensor): The input COOTensor, its data type must be float16, float32 or float64. Returns: COOTensor, has the same shape as `x`. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is not in [float16, float32, float64]. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_floor(x) >>> print(output.values) [-1. 2.] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_floor') return COOTensor(x.indices, math_func.floor(x.values), x.shape)
[docs]def csr_atan(x: CSRTensor) -> CSRTensor: r""" Computes the trigonometric inverse tangent of the input element-wise. .. math:: out_i = \tan^{-1}(x_i) Args: x (CSRTensor): The data type should be one of the following types: float16, float32. Returns: A CSRTensor, has the same type as the input. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is not float16 or float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_atan(x) >>> print(output.values) [-0.7853982 1.1071488] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_atan') return CSRTensor(x.indptr, x.indices, math_func.atan(x.values), x.shape)
[docs]def coo_atan(x: COOTensor) -> COOTensor: r""" Computes the trigonometric inverse tangent of the input element-wise. .. math:: out_i = \tan^{-1}(x_i) Args: x (COOTensor): The data type should be one of the following types: float16, float32. Returns: A COOTensor, has the same type as the input. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is not float16 or float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_atan(x) >>> print(output.values) [-0.7853982 1.1071488] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_atan') return COOTensor(x.indices, math_func.atan(x.values), x.shape)
[docs]def csr_square(x: CSRTensor) -> CSRTensor: """ Returns square of a CSRTensor element-wise. .. math:: out_{i} = (x_{i})^2 Args: x (CSRTensor): The input CSRTensor with a dtype of Number. Returns: CSRTensor, has the same shape and dtype as the `x`. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_square(x) >>> print(output.values) [1. 4.] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_square') return CSRTensor(x.indptr, x.indices, math_func.square(x.values), x.shape)
[docs]def coo_square(x: COOTensor) -> COOTensor: """ Returns square of a COOTensor element-wise. .. math:: out_{i} = (x_{i})^2 Args: x (COOTensor): The input COOTensor with a dtype of Number. Returns: COOTensor, has the same shape and dtype as the `x`. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_square(x) >>> print(output.values) [1. 4.] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_square') return COOTensor(x.indices, math_func.square(x.values), x.shape)
[docs]def csr_relu6(x: CSRTensor) -> CSRTensor: r""" Computes ReLU (Rectified Linear Unit) upper bounded by 6 of input csr_tensors element-wise. .. math:: \text{ReLU6}(x) = \min(\max(0,x), 6) It returns :math:`\min(\max(0,x), 6)` element-wise. Args: x (CSRTensor): Input CSRTensor, with float16 or float32 data type. Returns: CSRTensor, with the same dtype and shape as the `x`. Raises: TypeError: If dtype of `x` is neither float16 nor float32. TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_relu6(x) >>> print(output.values) [0. 2.] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_relu6') return CSRTensor(x.indptr, x.indices, nn_func.relu6(x.values), x.shape)
[docs]def coo_relu6(x: COOTensor) -> COOTensor: r""" Computes ReLU (Rectified Linear Unit) upper bounded by 6 of input coo_tensors element-wise. .. math:: \text{ReLU6}(x) = \min(\max(0,x), 6) It returns :math:`\min(\max(0,x), 6)` element-wise. Args: x (COOTensor): Input COOTensor, with float16 or float32 data type. Returns: COOTensor, with the same dtype and shape as the `x`. Raises: TypeError: If dtype of `x` is neither float16 nor float32. TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_relu6(x) >>> print(output.values) [0. 2.] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_relu6') return COOTensor(x.indices, nn_func.relu6(x.values), x.shape)
[docs]def csr_sinh(x: CSRTensor) -> CSRTensor: r""" Computes hyperbolic sine of the input element-wise. .. math:: out_i = \sinh(x_i) Args: x (CSRTensor): The input CSRTensor of hyperbolic sine function. Returns: CSRTensor, has the same shape as `x`. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_sinh(x) >>> print(output.values) [-1.1752012 3.6268604] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_sinh') return CSRTensor(x.indptr, x.indices, math_func.sinh(x.values), x.shape)
[docs]def coo_sinh(x: COOTensor) -> COOTensor: r""" Computes hyperbolic sine of the input element-wise. .. math:: out_i = \sinh(x_i) Args: x (COOTensor): The input COOTensor of hyperbolic sine function. Returns: COOTensor, has the same shape as `x`. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_sinh(x) >>> print(output.values) [-1.1752012 3.6268604] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_sinh') return COOTensor(x.indices, math_func.sinh(x.values), x.shape)
[docs]def csr_ceil(x: CSRTensor) -> CSRTensor: r""" Rounds a CSRTensor up to the closest integer element-wise. .. math:: out_i = \lceil x_i \rceil = \lfloor x_i \rfloor + 1 Args: x (CSRTensor): The input CSRTensor with a dtype of float16 or float32. Returns: CSRTensor, has the same shape as the `x`. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is not float16 or float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_ceil(x) >>> print(output.values) [-1. 2.] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_ceil') return CSRTensor(x.indptr, x.indices, math_func.ceil(x.values), x.shape)
[docs]def coo_ceil(x: COOTensor) -> COOTensor: r""" Rounds a COOTensor up to the closest integer element-wise. .. math:: out_i = \lceil x_i \rceil = \lfloor x_i \rfloor + 1 Args: x (COOTensor): The input COOTensor with a dtype of float16 or float32. Returns: COOTensor, has the same shape as the `x`. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is not float16 or float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_ceil(x) >>> print(output.values) [-1. 2.] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_ceil') return COOTensor(x.indices, math_func.ceil(x.values), x.shape)
[docs]def csr_cosh(x: CSRTensor) -> CSRTensor: r""" Computes hyperbolic cosine of input element-wise. .. math:: out_i = \cosh(x_i) Args: x (CSRTensor): The input CSRTensor of hyperbolic cosine function, its data type must be float16, float32, float64, complex64 or complex128. Returns: CSRTensor, has the same shape as `x`. Raises: TypeError: If the dtype of `x` is not one of the following types: float16, float32, float64, complex64, complex128. TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_cosh(x) >>> print(output.values) [1.5430807 3.7621956] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_cosh') return CSRTensor(x.indptr, x.indices, math_func.cosh(x.values), x.shape)
[docs]def coo_cosh(x: COOTensor) -> COOTensor: r""" Computes hyperbolic cosine of input element-wise. .. math:: out_i = \cosh(x_i) Args: x (COOTensor): The input COOTensor of hyperbolic cosine function, its data type must be float16, float32, float64, complex64 or complex128. Returns: COOTensor, has the same shape as `x`. Raises: TypeError: If the dtype of `x` is not one of the following types: float16, float32, float64, complex64, complex128. TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_cosh(x) >>> print(output.values) [1.5430807 3.7621956] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_cosh') return COOTensor(x.indices, math_func.cosh(x.values), x.shape)
[docs]def csr_softsign(x: CSRTensor) -> CSRTensor: r""" Softsign activation function. The function is shown as follows: .. math:: \text{SoftSign}(x) = \frac{x}{1 + |x|} Args: x (CSRTensor): Input CSRTensor, with float16 or float32 data type. Returns: CSRTensor, with the same type and shape as the `x`. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_softsign(x) >>> print(output.values) [-0.5 0.6666667] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_softsign') return CSRTensor(x.indptr, x.indices, nn_func.softsign(x.values), x.shape)
[docs]def coo_softsign(x: COOTensor) -> COOTensor: r""" Softsign activation function. The function is shown as follows: .. math:: \text{SoftSign}(x) = \frac{x}{1 + |x|} Args: x (COOTensor): Input COOTensor, with float16 or float32 data type. Returns: COOTensor, with the same type and shape as the `x`. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_softsign(x) >>> print(output.values) [-0.5 0.6666667] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_softsign') return COOTensor(x.indices, nn_func.softsign(x.values), x.shape)
[docs]def csr_log1p(x: CSRTensor) -> CSRTensor: r""" Returns the natural logarithm of one plus the input CSRTensor element-wise. .. math:: out_i = \text{log_e}(x_i + 1) Args: x (CSRTensor): The input CSRTensor. With float16 or float32 data type. The value must be greater than -1. Returns: CSRTensor, has the same shape as the `x`. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_log1p(x) >>> print(output.values) [ -inf 1.0986123] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_log1p') return CSRTensor(x.indptr, x.indices, math_func.log1p(x.values), x.shape)
[docs]def coo_log1p(x: COOTensor) -> COOTensor: r""" Returns the natural logarithm of one plus the input COOTensor element-wise. .. math:: out_i = \text{log_e}(x_i + 1) Args: x (COOTensor): The input COOTensor, should have dtype of float16 or float32 and its value should be greater than -1. Returns: COOTensor, has the same shape as the `x`. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is neither float16 nor float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_log1p(x) >>> print(output.values) [ -inf 1.0986123] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_log1p') return COOTensor(x.indices, math_func.log1p(x.values), x.shape)
[docs]def csr_round(x: CSRTensor) -> CSRTensor: """ Returns half to even of a CSRTensor element-wise. .. math:: out_i \\approx x_i Args: x (CSRTensor): The input CSRTensor. Returns: CSRTensor, has the same shape and type as the `x`. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_round(x) >>> print(output.values) [-1. 2.] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_round') return CSRTensor(x.indptr, x.indices, math_func.round(x.values), x.shape)
[docs]def coo_round(x: COOTensor) -> COOTensor: r""" Returns half to even of a COOTensor element-wise. .. math:: out_i \approx x_i Args: x (COOTensor): The input COOTensor. Returns: COOTensor, has the same shape and type as the `x`. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_round(x) >>> print(output.values) [-1. 2.] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_round') return COOTensor(x.indices, math_func.round(x.values), x.shape)
[docs]def csr_tanh(x: CSRTensor) -> CSRTensor: r""" Computes hyperbolic tangent of input element-wise. The Tanh function is defined as: .. math:: tanh(x_i) = \frac{\exp(x_i) - \exp(-x_i)}{\exp(x_i) + \exp(-x_i)} = \frac{\exp(2x_i) - 1}{\exp(2x_i) + 1}, where :math:`x_i` is an element of the input CSRTensor. Args: x (CSRTensor): Input CSRTensor, with float16 or float32 data type. Returns: CSRTensor, with the same type and shape as the `x`. Raises: TypeError: If dtype of `x` is neither float16 nor float32. TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_tanh(x) >>> print(output.values) [-0.7615942 0.9640276] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_tanh') return CSRTensor(x.indptr, x.indices, math_func.tanh(x.values), x.shape)
[docs]def coo_tanh(x: COOTensor) -> COOTensor: r""" Computes hyperbolic tangent of input element-wise. The Tanh function is defined as: .. math:: tanh(x_i) = \frac{\exp(x_i) - \exp(-x_i)}{\exp(x_i) + \exp(-x_i)} = \frac{\exp(2x_i) - 1}{\exp(2x_i) + 1}, where :math:`x_i` is an element of the input COOTensor. Args: x (COOTensor): Input COOTensor, with float16 or float32 data type. Returns: COOTensor, with the same type and shape as the `x`. Raises: TypeError: If dtype of `x` is neither float16 nor float32. TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_tanh(x) >>> print(output.values) [-0.7615942 0.9640276] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_tanh') return COOTensor(x.indices, math_func.tanh(x.values), x.shape)
[docs]def csr_asinh(x: CSRTensor) -> CSRTensor: r""" Computes inverse hyperbolic sine of the input element-wise. .. math:: out_i = \sinh^{-1}(input_i) Args: x (CSRTensor): The input CSRTensor of inverse hyperbolic sine function, i.e. :math:`input_i`. Returns: CSRTensor, has the same shape and type as `x`. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_asinh(x) >>> print(output.values) [-0.8813736 1.4436355] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_asinh') return CSRTensor(x.indptr, x.indices, math_func.asinh(x.values), x.shape)
[docs]def coo_asinh(x: COOTensor) -> COOTensor: r""" Computes inverse hyperbolic sine of the input element-wise. .. math:: out_i = \sinh^{-1}(input_i) Args: x (COOTensor): The input COOTensor of inverse hyperbolic sine function. Returns: COOTensor, has the same shape and type as `x`. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_asinh(x) >>> print(output.values) [-0.8813736 1.4436355] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_asinh') return COOTensor(x.indices, math_func.asinh(x.values), x.shape)
[docs]def csr_neg(x: CSRTensor) -> CSRTensor: """ Returns a CSRTensor with csr_negative values of the input CSRTensor element-wise. .. math:: out_{i} = - x_{i} Args: x (CSRTensor): The input CSRTensor with a dtype of Number. Returns: CSRTensor, has the same shape and dtype as input. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_neg(x) >>> print(output.values) [ 1. -2.] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_neg') return CSRTensor(x.indptr, x.indices, math_func.neg(x.values), x.shape)
[docs]def coo_neg(x: COOTensor) -> COOTensor: """ Returns a COOTensor with coo_negative values of the input COOTensor element-wise. .. math:: out_{i} = - x_{i} Args: x (COOTensor): The input COOTensor with a dtype of Number. Returns: COOTensor, has the same shape and dtype as input. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_neg(x) >>> print(output.values) [ 1. -2.] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_neg') return COOTensor(x.indices, math_func.neg(x.values), x.shape)
[docs]def csr_acosh(x: CSRTensor) -> CSRTensor: r""" Computes inverse hyperbolic cosine of the inputs element-wise. .. math:: out_i = \cosh^{-1}(input_i) Args: x (CSRTensor): The input CSRTensor of inverse hyperbolic cosine function, i.e. :math:`input_i`, its element must be in range [1, inf]. Returns: CSRTensor, has the same shape and type as `x`. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_acosh(x) >>> print(output.values) [ nan 1.316958] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_acosh') return CSRTensor(x.indptr, x.indices, math_func.acosh(x.values), x.shape)
[docs]def coo_acosh(x: COOTensor) -> COOTensor: r""" Computes inverse hyperbolic cosine of the inputs element-wise. .. math:: y_i = \cosh^{-1}(x_i) .. warning:: Given an input COOTensor x, the function computes inverse hyperbolic cosine of every element. Input range is [1, inf]. Args: x (COOTensor): The input COOTensor of inverse hyperbolic cosine function. Returns: COOTensor, has the same shape and type as `x`. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_acosh(x) >>> print(output.values) [ nan 1.316958] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_acosh') return COOTensor(x.indices, math_func.acosh(x.values), x.shape)
[docs]def csr_isinf(x: CSRTensor) -> CSRTensor: r""" Determines which elements are inf or -inf for each position. .. math:: out_i = \begin{cases} & \text{ if } x_{i} = \text{Inf},\ \ True \\ & \text{ if } x_{i} \ne \text{Inf},\ \ False \end{cases} where :math:`Inf` means not a number. Args: x (CSRTensor): The input CSRTensor. Returns: CSRTensor, has the same shape of input, and the dtype is bool. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_isinf(x) >>> print(output.values) [False False] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_isinf') return CSRTensor(x.indptr, x.indices, math_func.isinf(x.values), x.shape)
[docs]def coo_isinf(x: COOTensor) -> COOTensor: r""" Determines which elements are inf or -inf for each position. .. math:: out_i = \begin{cases} & \text{ if } x_{i} = \text{Inf},\ \ True \\ & \text{ if } x_{i} \ne \text{Inf},\ \ False \end{cases} where :math:`Inf` means infinitity or negative infinitity. Args: x (COOTensor): The input COOTensor. Returns: COOTensor, has the same shape of input, and the dtype is bool. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_isinf(x) >>> print(output.values) [False False] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_isinf') return COOTensor(x.indices, math_func.isinf(x.values), x.shape)
[docs]def csr_atanh(x: CSRTensor) -> CSRTensor: r""" Computes inverse hyperbolic tangent of the input element-wise. .. math:: out_i = \tanh^{-1}(x_{i}) .. warning:: This is an experimental API that is subject to change or deletion. Args: x (CSRTensor): Input CSRTensor. The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions. The data type should be one of the following types: float16, float32. Returns: A CSRTensor, has the same type as the input. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is not float16 or float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_atanh(x) >>> print(output.values) [-inf nan] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_atanh') return CSRTensor(x.indptr, x.indices, math_func.atanh(x.values), x.shape)
[docs]def coo_atanh(x: COOTensor) -> COOTensor: r""" Computes inverse hyperbolic tangent of the input element-wise. .. math:: out_i = \tanh^{-1}(x_{i}) .. warning:: This is an experimental API that is subject to change or deletion. Args: x (COOTensor): Input COOTensor. The data type should be one of the following types: float16, float32. Returns: A COOTensor, has the same type as the input. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is not float16 or float32. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_atanh(x) >>> print(output.values) [-inf nan] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_atanh') return COOTensor(x.indices, math_func.atanh(x.values), x.shape)
[docs]def csr_sigmoid(x: CSRTensor) -> CSRTensor: r""" Sigmoid activation function. Computes Sigmoid of input element-wise. The Sigmoid function is defined as: .. math:: \text{csr_sigmoid}(x_i) = \frac{1}{1 + \exp(-x_i)} where :math:`x_i` is an element of the x. Args: x (CSRTensor): Input CSRTensor, the data type is float16, float32, float64, complex64 or complex128. Returns: CSRTensor, with the same type and shape as the x. Raises: TypeError: If dtype of `x` is not float16, float32, float64, complex64 or complex128. TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_sigmoid(x) >>> print(output.values) [0.26894143 0.8807971 ] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_sigmoid') return CSRTensor(x.indptr, x.indices, nn_func.sigmoid(x.values), x.shape)
[docs]def coo_sigmoid(x: COOTensor) -> COOTensor: r""" Sigmoid activation function. Computes Sigmoid of input element-wise. The Sigmoid function is defined as: .. math:: \text{coo_sigmoid}(x_i) = \frac{1}{1 + \exp(-x_i)} where :math:`x_i` is an element of the x. Args: x (COOTensor): Input COOTensor, the data type is float16, float32, float64, complex64 or complex128. Returns: COOTensor, with the same type and shape as the x. Raises: TypeError: If dtype of `x` is not float16, float32, float64, complex64 or complex128. TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_sigmoid(x) >>> print(output.values) [0.26894143 0.8807971 ] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_sigmoid') return COOTensor(x.indices, nn_func.sigmoid(x.values), x.shape)
[docs]def csr_abs(x: CSRTensor) -> CSRTensor: """ Returns csr_absolute value of a CSRTensor element-wise. .. math:: out_i = |x_i| Args: x (CSRTensor): The input CSRTensor. Returns: CSRTensor, has the same shape as the `x`. Raises: TypeError: If `x` is not a CSRTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_abs(x) >>> print(output.values) [1. 2.] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_abs') return CSRTensor(x.indptr, x.indices, math_func.abs(x.values), x.shape)
[docs]def coo_abs(x: COOTensor) -> COOTensor: """ Returns coo_absolute value of a COOTensor element-wise. .. math:: out_i = |x_i| Args: x (COOTensor): The input COOTensor. Returns: COOTensor, has the same shape as the `x`. Raises: TypeError: If `x` is not a COOTensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_abs(x) >>> print(output.values) [1. 2.] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_abs') return COOTensor(x.indices, math_func.abs(x.values), x.shape)
[docs]def csr_sin(x: CSRTensor) -> CSRTensor: r""" Computes sine of the input element-wise. .. math:: out_i = \sin(x_i) Args: x (CSRTensor): Input CSRTensor. Returns: CSRTensor, has the same shape and dtype as `x`. Raises: TypeError: If `x` is not a CSRTensor. TypeError: If dtype of `x` is not float16, float32 or float64, complex64, complex128. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, CSRTensor >>> indptr = Tensor([0, 1, 2, 2], dtype=mstype.int32) >>> indices = Tensor([3, 0], dtype=mstype.int32) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = CSRTensor(indptr, indices, values, shape) >>> output = ops.csr_sin(x) >>> print(output.values) [-0.84147096 0.9092974 ] """ if not isinstance(x, CSRTensor): raise_type_error('Expects CSRTensor for csr_sin') return CSRTensor(x.indptr, x.indices, math_func.sin(x.values), x.shape)
[docs]def coo_sin(x: COOTensor) -> COOTensor: r""" Computes sine of the input element-wise. .. math:: out_i = \sin(x_i) Args: x (COOTensor): Input COOTensor. Returns: COOTensor, has the same shape and dtype as `x`. Raises: TypeError: If `x` is not a COOTensor. TypeError: If dtype of `x` is not float16, float32 or float64, complex64, complex128. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> from mindspore import dtype as mstype >>> from mindspore import Tensor, ops, COOTensor >>> indices = Tensor([[0, 1], [1, 2]], dtype=mstype.int64) >>> values = Tensor([-1, 2], dtype=mstype.float32) >>> shape = (3, 4) >>> x = COOTensor(indices, values, shape) >>> output = ops.coo_sin(x) >>> print(output.values) [-0.84147096 0.9092974 ] """ if not isinstance(x, COOTensor): raise_type_error('Expects COOTensor for coo_sin') return COOTensor(x.indices, math_func.sin(x.values), x.shape)
__all__ = [ "csr_cos", "csr_tan", "csr_exp", "csr_inv", "csr_relu", "csr_expm1", "csr_isfinite", "csr_asin", "csr_sqrt", "csr_log", "csr_isnan", "csr_acos", "csr_floor", "csr_atan", "csr_square", "csr_relu6", "csr_sinh", "csr_ceil", "csr_cosh", "csr_softsign", "csr_log1p", "csr_round", "csr_tanh", "csr_asinh", "csr_neg", "csr_acosh", "csr_isinf", "csr_atanh", "csr_sigmoid", "csr_abs", "csr_sin", "coo_cos", "coo_tan", "coo_exp", "coo_inv", "coo_relu", "coo_expm1", "coo_isfinite", "coo_asin", "coo_sqrt", "coo_log", "coo_isnan", "coo_acos", "coo_floor", "coo_atan", "coo_square", "coo_relu6", "coo_sinh", "coo_ceil", "coo_cosh", "coo_softsign", "coo_log1p", "coo_round", "coo_tanh", "coo_asinh", "coo_neg", "coo_acosh", "coo_isinf", "coo_atanh", "coo_sigmoid", "coo_abs", "coo_sin" ] __all__.sort()