文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.select

mindspore.ops.select(cond, x, y)[source]

Returns the selected elements, either from input x or input y, depending on the condition cond.

Given a tensor as input, this operation inserts a dimension of 1 at the dimension, it was invalid when both x and y are none. Keep in mind that the shape of the output tensor can vary depending on how many true values are in the input. Indexes are output in row-first order.

The conditional tensor acts as an optional compensation (mask), which determines whether the corresponding element / row in the output must be selected from x (if true) or y (if false) based on the value of each element.

It can be defined as:

outi={xi,if conditioniyi,otherwise

If condition is a vector, then x and y are higher-dimensional matrices, then it chooses to copy that row (external dimensions) from x and y. If condition has the same shape as x and y, you can choose to copy these elements from x and y.

Inputs:
  • cond (Tensor[bool]) - The shape is (x1,x2,...,xN,...,xR). The condition tensor, decides which element is chosen.

  • x (Union[Tensor, int, float]) - The shape is (x1,x2,...,xN,...,xR). The first input tensor. If x is int or float, it will be cast to the type of int32 or float32, and broadcast to the same shape as y. One of x and y must be a Tensor.

  • y (Union[Tensor, int, float]) - The shape is (x1,x2,...,xN,...,xR). The second input tensor. If y is int or float, it will be cast to the type of int32 or float32, and broadcast to the same shape as x. One of x and y must be a Tensor.

Outputs:

Tensor, has the same shape as cond. The shape is (x1,x2,...,xN,...,xR).

Raises
  • TypeError – If x or y is not a Tensor, int or float.

  • ValueError – The shapes of inputs not equal.

Supported Platforms:

Ascend GPU CPU

Examples

>>> # 1) Both inputs are Tensor
>>> import mindspore
>>> from mindspore import Tensor, ops
>>>
>>> cond = Tensor([True, False])
>>> x = Tensor([2,3], mindspore.float32)
>>> y = Tensor([1,2], mindspore.float32)
>>> output = ops.select(cond, x, y)
>>> print(output)
[2. 2.]
>>> # 2) y is a float
>>> cond = Tensor([True, False])
>>> x = Tensor([2,3], mindspore.float32)
>>> y = 2.0
>>> output = ops.select(cond, x, y)
>>> print(output)
[2. 2.]