mindspore.ops.SeLU
- class mindspore.ops.SeLU[source]
Computes SeLU (scaled exponential Linear Unit) of input tensors element-wise.
The activation function is defined as:
where
and are pre-defined constants( and ).See more details in Self-Normalizing Neural Networks.
- Inputs:
input_x (Tensor) - Tensor of shape
, where means, any number of additional dimensions, with float16 or float32 data type.
- Outputs:
Tensor, with the same type and shape as the input_x.
- Supported Platforms:
Ascend
- Raises
TypeError – If dtype of input_x is neither float16 nor float32.
Examples
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> selu = ops.SeLU() >>> output = selu(input_x) >>> print(output) [[-1.1113307 4.202804 -1.7575096] [ 2.101402 -1.7462534 9.456309 ]]