mindspore.ops.ReLUV2
- class mindspore.ops.ReLUV2[source]
Rectified Linear Unit activation function.
It returns element-wise
, specially, the neurons with the negative output will be suppressed and the active neurons will stay the same.Note
The difference from ReLu is that the operator will output one more Mask, and the kernel of the operator is different from ReLu.
- Inputs:
input_x (Tensor) - The input tensor must be a 4-D tensor.
- Outputs:
output (Tensor) - Has the same type and shape as the input_x.
mask (Tensor) - A tensor whose data type must be uint8.
- Raises
TypeError – If input_x is not a Tensor.
ValueError – If shape of input_x is not 4-D.
- Supported Platforms:
Ascend
Examples
>>> input_x = Tensor(np.array([[[[1, -2], [-3, 4]], [[-5, 6], [7, -8]]]]), mindspore.float32) >>> relu_v2 = ops.ReLUV2() >>> output, mask= relu_v2(input_x) >>> print(output) [[[[1. 0.] [0. 4.]] [[0. 6.] [7. 0.]]]] >>> print(mask) [[[[[1 0] [2 0]] [[2 0] [1 0]]]]]