文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.OneHot

class mindspore.ops.OneHot(axis=- 1)[source]

Computes a one-hot tensor.

The locations represented by indices in indices take value on_value, while all other locations take value off_value.

Note

If the input indices is rank N, the output will have rank N+1. The new axis is created at dimension axis.

Parameters

axis (int) – Position to insert the value. e.g. If shape of indices is (N,C), and axis is -1, the output shape will be (N,C,D), If axis is 0, the output shape will be (D,N,C). Default: -1.

Inputs:
  • indices (Tensor) - A tensor of indices. Tensor of shape (X0,,Xn). Data type must be int32 or int64.

  • depth (int) - A scalar defining the depth of the one-hot dimension.

  • on_value (Tensor) - A value to fill in output when indices[j] = i. With data type of float16 or float32.

  • off_value (Tensor) - A value to fill in output when indices[j] != i. Has the same data type as on_value.

Outputs:

Tensor, one-hot tensor. Tensor of shape (X0,,Xaxis,depth,Xaxis+1,,Xn).

Raises
  • TypeError – If axis or depth is not an int.

  • TypeError – If dtype of indices is neither int32 nor int64.

  • TypeError – If indices, on_value or off_value is not a Tensor.

  • ValueError – If axis is not in range [-1, len(indices_shape)].

  • ValueError – If depth is less than 0.

Supported Platforms:

Ascend GPU CPU

Examples

>>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32)
>>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32)
>>> onehot = ops.OneHot()
>>> output = onehot(indices, depth, on_value, off_value)
>>> print(output)
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]