mindspore.ops.L2Normalize
- class mindspore.ops.L2Normalize(axis=0, epsilon=0.0001)[source]
L2 Normalization Operator.
This operator will normalize the input using the given axis. The function is shown as follows:
\[\begin{split}\displaylines{{\text{output} = \frac{x}{\sqrt{\text{max}(\parallel x_i \parallel^p , \epsilon)} } } \\ {\parallel x_i \parallel^p = (\sum_{i}^{}\left | x_i \right | ^p )^{1/p}} }\end{split}\]where \(\epsilon\) is epsilon and \(\sum_{i}^{}\left | x_i \right | ^p\) calculates along the dimension axis.
- Parameters
- Inputs:
x (Tensor) - Input to compute the normalization. Tensor of shape \((N, \ldots)\). Data type must be float16 or float32.
- Outputs:
Tensor, with the same type and shape as the x.
- Raises
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> l2_normalize = ops.L2Normalize() >>> x = Tensor(np.random.randint(-256, 256, (2, 3, 4)), mindspore.float32) >>> output = l2_normalize(x) >>> print(output.shape) (2, 3, 4)