文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.EmbeddingLookup

class mindspore.ops.EmbeddingLookup[source]

Returns a slice of input tensor based on the specified indices.

This Primitive has the similar functionality as GatherV2 operating on axis = 0, but has one more inputs: offset.

Inputs:
  • input_params (Tensor) - The shape of tensor is (x1,x2,...,xR). This represents a Tensor slice, instead of the entire Tensor. Currently, the dimension is restricted to be 2.

  • input_indices (Tensor) - The shape of tensor is (y1,y2,...,yS). Specifies the indices of elements of the original Tensor. Values can be out of range of input_params, and the exceeding part will be filled with 0 in the output. Values do not support negative and the result is undefined if values are negative. The data type should be int32 or int64.

  • offset (int) - Specifies the offset value of this input_params slice. Thus the real indices are equal to input_indices minus offset.

Outputs:

Tensor, the shape of tensor is (z1,z2,...,zN). The data type is the same with input_params.

Raises
  • TypeError – If dtype of input_indices is not int.

  • ValueError – If length of shape of input_params is greater than 2.

Supported Platforms:

Ascend CPU GPU

Examples

>>> input_params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mindspore.float32)
>>> input_indices = Tensor(np.array([[5, 2], [8, 5]]), mindspore.int32)
>>> offset = 4
>>> output = ops.EmbeddingLookup()(input_params, input_indices, offset)
>>> print(output)
[[[10. 11.]
  [ 0.  0.]]
 [[ 0.  0.]
  [10. 11.]]]