文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.probability.distribution.LogNormal

class mindspore.nn.probability.distribution.LogNormal(loc=None, scale=None, seed=0, dtype=mstype.float32, name='LogNormal')[source]

LogNormal distribution. A log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. The log-normal distribution has the range (0,inf) with the pdf as

f(x,μ,σ)=1/xσ2πexp((ln(x)μ)2/2σ2).

where μ,σ are the mean and the standard deviation of the underlying normal distribution respectively. It is constructed as the exponential transformation of a Normal distribution.

Parameters
  • loc (int, float, list, numpy.ndarray, Tensor) – The mean of the underlying Normal distribution. Default: None.

  • scale (int, float, list, numpy.ndarray, Tensor) – The standard deviation of the underlying Normal distribution. Default: None.

  • seed (int) – the seed used in sampling. The global seed is used if it is None. Default: 0.

  • dtype (mindspore.dtype) – type of the distribution. Default: mstype.float32.

  • name (str) – the name of the distribution. Default: ‘LogNormal’.

Inputs and Outputs of APIs:

The accessible APIs of the Log-Normal distribution are defined in the base class, including:

  • prob, log_prob, cdf, log_cdf, survival_function, and log_survival

  • mean, sd, mode, var, and entropy

  • kl_loss and cross_entropy

  • sample

For more details of all APIs, including the inputs and outputs of APIs of the Log-Normal distribution, please refer to mindspore.nn.probability.distribution.Distribution, and examples below.

Supported Platforms:

Ascend GPU

Note

scale must be greater than zero. dist_spec_args are loc and scale. dtype must be a float type because LogNormal distributions are continuous.

Raises
  • ValueError – When scale <= 0.

  • TypeError – When the input dtype is not a subclass of float.

Examples

>>> import numpy as np
>>> import mindspore
>>> import mindspore.nn as nn
>>> import mindspore.nn.probability.distribution as msd
>>> from mindspore import Tensor
>>> class Prob(nn.Cell):
...     def __init__(self):
...         super(Prob, self).__init__()
...         self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=mindspore.float32)
...     def construct(self, x_):
...         return self.ln.prob(x_)
>>> pdf = Prob()
>>> output = pdf(Tensor([1.0, 2.0], dtype=mindspore.float32))
>>> print(output.shape)
(2, 2)
extend_repr()[source]

Display instance object as string.

property loc

Distribution parameter for the pre-transformed mean after casting to dtype.

Output:

Tensor, the loc parameter of the distribution.

property scale

Distribution parameter for the pre-transformed standard deviation after casting to dtype.

Output:

Tensor, the scale parameter of the distribution.