文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.SSIM

class mindspore.nn.SSIM(max_val=1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03)[source]

Returns SSIM index between two images.

Its implementation is based on Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing.

SSIM is a measure of the similarity of two pictures. Like PSNR, SSIM is often used as an evaluation of image quality. SSIM is a number between 0 and 1.The larger it is, the smaller the gap between the output image and the undistorted image, that is, the better the image quality. When the two images are exactly the same, SSIM=1.

l(x,y)=2μxμy+C1μx2+μy2+C1,C1=(K1L)2.c(x,y)=2σxσy+C2σx2+σy2+C2,C2=(K2L)2.s(x,y)=σxy+C3σxσy+C3,C3=C2/2.SSIM(x,y)=lcs=(2μxμy+C1)(2σxy+C2(μx2+μy2+C1)(σx2+σy2+C2).
Parameters
  • max_val (Union[int, float]) – The dynamic range of the pixel values (255 for 8-bit grayscale images). Default: 1.0.

  • filter_size (int) – The size of the Gaussian filter. Default: 11. The value must be greater than or equal to 1.

  • filter_sigma (float) – The standard deviation of Gaussian kernel. Default: 1.5. The value must be greater than 0.

  • k1 (float) – The constant used to generate c1 in the luminance comparison function. Default: 0.01.

  • k2 (float) – The constant used to generate c2 in the contrast comparison function. Default: 0.03.

Inputs:
  • img1 (Tensor) - The first image batch with format ‘NCHW’. It must be the same shape and dtype as img2.

  • img2 (Tensor) - The second image batch with format ‘NCHW’. It must be the same shape and dtype as img1.

Outputs:

Tensor, has the same dtype as img1. It is a 1-D tensor with shape N, where N is the batch num of img1.

Raises
  • TypeError – If max_val is neither int nor float.

  • TypeError – If k1, k2 or filter_sigma is not a float.

  • TypeError – If filter_size is not an int.

  • ValueError – If max_val or filter_sigma is less than or equal to 0.

  • ValueError – If filter_size is less than 0.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor
>>> net = nn.SSIM()
>>> img1 = Tensor(np.ones([1, 3, 16, 16]).astype(np.float32))
>>> img2 = Tensor(np.ones([1, 3, 16, 16]).astype(np.float32))
>>> output = net(img1, img2)
>>> print(output)
[1.]