文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.Dropout

class mindspore.nn.Dropout(keep_prob=0.5, dtype=mstype.float32)[source]

Dropout layer for the input.

Randomly set some elements of the input tensor to zero with probability 1keep_prob during training using samples from a Bernoulli distribution.

The outputs are scaled by a factor of 1keep_prob during training so that the output layer remains at a similar scale. During inference, this layer returns the same tensor as the x.

This technique is proposed in paper Dropout: A Simple Way to Prevent Neural Networks from Overfitting and proved to be effective to reduce over-fitting and prevents neurons from co-adaptation. See more details in Improving neural networks by preventing co-adaptation of feature detectors.

Note

Each channel will be zeroed out independently on every construct call.

Parameters
  • keep_prob (float) – The keep rate, greater than 0 and less equal than 1. E.g. rate=0.9, dropping out 10% of input units. Default: 0.5.

  • dtype (mindspore.dtype) – Data type of x. Default: mindspore.float32.

Inputs:
  • x (Tensor) - The input of Dropout with data type of float16 or float32. The shape is (N,) where means, any number of additional dimensions.

Outputs:

Tensor, output tensor with the same shape as the x.

Raises
  • TypeError – If keep_prob is not a float.

  • TypeError – If dtype of x is not neither float16 nor float32.

  • ValueError – If keep_prob is not in range (0, 1].

  • ValueError – If length of shape of x is less than 1.

Supported Platforms:

Ascend GPU CPU

Examples

>>> x = Tensor(np.ones([2, 2, 3]), mindspore.float32)
>>> net = nn.Dropout(keep_prob=0.8)
>>> net.set_train()
Dropout<keep_prob=0.8>
>>> output = net(x)
>>> print(output.shape)
(2, 2, 3)