文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.BCELoss

class mindspore.nn.BCELoss(weight=None, reduction='none')[source]

BCELoss creates a criterion to measure the binary cross entropy between the true labels and predicted labels.

Set the predicted labels as x, true labels as y, the output loss as (x,y). Let,

L={l1,,lN},ln=wn[ynlogxn+(1yn)log(1xn)]

where N is the batch size. Then,

(x,y)={L,if reduction='none';mean(L),if reduction='mean';sum(L),if reduction='sum'.

Note

Note that the predicted labels should always be the output of sigmoid. Because it is a two-class classification, the true labels should be numbers between 0 and 1. And if input is either 0 or 1, one of the log terms would be mathematically undefined in the above loss equation.

Parameters
  • weight (Tensor, optional) – A rescaling weight applied to the loss of each batch element. And it must have the same shape and data type as inputs. Default: None

  • reduction (str) – Specifies the reduction to be applied to the output. Its value must be one of ‘none’, ‘mean’, ‘sum’. Default: ‘none’.

Inputs:
  • logits (Tensor) - The input tensor with shape (N,) where means, any number of additional dimensions. The data type must be float16 or float32.

  • labels (Tensor) - The label tensor with shape (N,), the same shape and data type as logits.

Outputs:

Tensor or Scalar, if reduction is ‘none’, then output is a tensor and has the same shape as logits. Otherwise, the output is a scalar.

Raises
  • TypeError – If dtype of logits, labels or weight (if given) is neither float16 not float32.

  • ValueError – If reduction is not one of ‘none’, ‘mean’, ‘sum’.

  • ValueError – If shape of logits is not the same as labels or weight (if given).

Supported Platforms:

Ascend GPU CPU

Examples

>>> weight = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 3.3, 2.2]]), mindspore.float32)
>>> loss = nn.BCELoss(weight=weight, reduction='mean')
>>> logits = Tensor(np.array([[0.1, 0.2, 0.3], [0.5, 0.7, 0.9]]), mindspore.float32)
>>> labels = Tensor(np.array([[0, 1, 0], [0, 0, 1]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
1.8952923