文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

问题描述

请勾选同意隐私声明

mindspore.nn.AdamWeightDecay

class mindspore.nn.AdamWeightDecay(params, learning_rate=0.001, beta1=0.9, beta2=0.999, eps=1e-06, weight_decay=0.0)[source]

Implements the Adam algorithm with weight decay.

mt+1=β1mt+(1β1)gvt+1=β2vt+(1β2)ggupdate=mt+1vt+1+epsupdate={update+weight_decaywt if weight_decay>0update otherwise wt+1=wtlrupdate

m represents the 1st moment vector moment1, v represents the 2nd moment vector moment2, g represents gradients, lr represents learning_rate, β1,β2 represent beta1 and beta2, t represents the current step, w represents params.

Note

There is usually no connection between a optimizer and mixed precision. But when FixedLossScaleManager is used and drop_overflow_update in FixedLossScaleManager is set to False, optimizer needs to set the ‘loss_scale’. As this optimizer has no argument of loss_scale, so loss_scale needs to be processed by other means, refer document LossScale to process loss_scale correctly.

If parameters are not grouped, the weight_decay in optimizer will be applied on the network parameters without ‘beta’ or ‘gamma’ in their names. Users can group parameters to change the strategy of decaying weight. When parameters are grouped, each group can set weight_decay, if not, the weight_decay in optimizer will be applied.

Parameters
  • params (Union[list[Parameter], list[dict]]) –

    Must be list of Parameter or list of dict. When the params is a list of dict, the string “params”, “lr”, “weight_decay”, and “order_params” are the keys can be parsed.

    • params: Required. Parameters in current group. The value must be a list of Parameter.

    • lr: Optional. If “lr” in the keys, the value of corresponding learning rate will be used. If not, the learning_rate in optimizer will be used. Fixed and dynamic learning rate are supported.

    • weight_decay: Optional. If “weight_decay” in the keys, the value of corresponding weight decay will be used. If not, the weight_decay in the optimizer will be used.

    • order_params: Optional. When parameters is grouped, this usually is used to maintain the order of parameters that appeared in the network to improve performance. The value should be parameters whose order will be followed in optimizer. If order_params in the keys, other keys will be ignored and the element of ‘order_params’ must be in one group of params.

  • learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]) –

    Default: 1e-3.

    • float: The fixed learning rate value. Must be equal to or greater than 0.

    • int: The fixed learning rate value. Must be equal to or greater than 0. It will be converted to float.

    • Tensor: Its value should be a scalar or a 1-D vector. For scalar, fixed learning rate will be applied. For vector, learning rate is dynamic, then the i-th step will take the i-th value as the learning rate.

    • Iterable: Learning rate is dynamic. The i-th step will take the i-th value as the learning rate.

    • LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of LearningRateSchedule with step as the input to get the learning rate of current step.

  • beta1 (float) – The exponential decay rate for the 1st moment estimations. Default: 0.9. Should be in range (0.0, 1.0).

  • beta2 (float) – The exponential decay rate for the 2nd moment estimations. Default: 0.999. Should be in range (0.0, 1.0).

  • eps (float) – Term added to the denominator to improve numerical stability. Default: 1e-6. Should be greater than 0.

  • weight_decay (float) – Weight decay (L2 penalty). It must be equal to or greater than 0. Default: 0.0.

Inputs:
  • gradients (tuple[Tensor]) - The gradients of params, the shape is the same as params.

Outputs:

tuple[bool], all elements are True.

Raises
  • TypeError – If learning_rate is not one of int, float, Tensor, Iterable, LearningRateSchedule.

  • TypeError – If element of parameters is neither Parameter nor dict.

  • TypeError – If beta1, beta2 or eps is not a float.

  • TypeError – If weight_decay is neither float nor int.

  • ValueError – If eps is less than or equal to 0.

  • ValueError – If beta1, beta2 is not in range (0.0, 1.0).

  • ValueError – If weight_decay is less than 0.

Supported Platforms:

Ascend GPU CPU

Examples

>>> from mindspore import nn, Model
>>>
>>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay
>>> optim = nn.AdamWeightDecay(params=net.trainable_params())
>>>
>>> #2) Use parameter groups and set different values
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
...                 {'params': no_conv_params, 'lr': 0.01},
...                 {'order_params': net.trainable_params()}]
>>> optim = nn.AdamWeightDecay(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
>>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
>>>
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> model = Model(net, loss_fn=loss, optimizer=optim)