文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.Accuracy

class mindspore.nn.Accuracy(eval_type='classification')[source]

Calculates the accuracy for classification and multilabel data.

The accuracy class has two local variables, the correct number and the total number of samples, that are used to compute the frequency with which y_pred matches y. This frequency is ultimately returned as the accuracy: an idempotent operation that simply divides the correct number by the total number.

accuracy=true_positive+true_negativetrue_positive+true_negative+false_positive+false_negative
Parameters

eval_type (str) – The metric to calculate the accuracy over a dataset. Supports ‘classification’ and ‘multilabel’. ‘classification’ means the dataset label is single. ‘multilabel’ means the dataset has multiple labels. Default: ‘classification’.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import numpy as np
>>> import mindspore
>>> from mindspore import nn, Tensor
>>>
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mindspore.float32)
>>> y = Tensor(np.array([1, 0, 1]), mindspore.float32)
>>> metric = nn.Accuracy('classification')
>>> metric.clear()
>>> metric.update(x, y)
>>> accuracy = metric.eval()
>>> print(accuracy)
0.6666666666666666
clear()[source]

Clears the internal evaluation result.

eval()[source]

Computes the accuracy.

Returns

Float, the computed result.

Raises

RuntimeError – If the sample size is 0.

update(*inputs)[source]

Updates the local variables. For ‘classification’, if the index of the maximum of the predict value matches the label, the predict result is correct. For ‘multilabel’, the predict value match the label, the predict result is correct.

Parameters

inputs – Logits and labels. y_pred stands for logits, y stands for labels. y_pred and y must be a Tensor, a list or an array. For the ‘classification’ evaluation type, y_pred is a list of floating numbers in range [0,1] and the shape is (N,C) in most cases (not strictly), where N is the number of cases and C is the number of categories. y must be in one-hot format that shape is (N,C), or can be transformed to one-hot format that shape is (N,). For ‘multilabel’ evaluation type, the value of y_pred and y can only be 0 or 1, indices with 1 indicate the positive category. The shape of y_pred and y are both (N,C).

Raises

ValueError – If the number of the inputs is not 2.