Source code for mindspore.dataset.callback.ds_callback

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Python callback class
"""
import threading
from mindspore._c_dataengine import PyDSCallback
from mindspore.train.callback import Callback
import mindspore.dataset as ds
from .validators import check_callback


[docs]class DSCallback: """ Abstract base class used to build a dataset callback class. Args: step_size (int, optional): The number of steps between the step_begin and step_end are called (Default=1). Examples: >>> from mindspore.dataset import DSCallback >>> from mindspore.dataset.transforms import c_transforms >>> >>> class PrintInfo(DSCallback): ... def ds_epoch_end(self, ds_run_context): ... print(ds_run_context.cur_epoch_num) ... print(ds_run_context.cur_step_num) >>> >>> dataset = ds.MnistDataset(mnist_dataset_dir, num_samples=100) >>> op = c_transforms.OneHot(10) >>> dataset = dataset.map(operations=op, callbacks=PrintInfo()) """ @check_callback def __init__(self, step_size=1): self.step_size = step_size
[docs] def ds_begin(self, ds_run_context): """ Called before the data pipeline is started. Args: ds_run_context (RunContext): Include some information of the pipeline. """
[docs] def ds_epoch_begin(self, ds_run_context): """ Called before a new epoch is started. Args: ds_run_context (RunContext): Include some information of the pipeline. """
[docs] def ds_epoch_end(self, ds_run_context): """ Called after an epoch is finished. Args: ds_run_context (RunContext): Include some information of the pipeline. """
[docs] def ds_step_begin(self, ds_run_context): """ Called before each step start. Args: ds_run_context (RunContext): Include some information of the pipeline. """
[docs] def ds_step_end(self, ds_run_context): """ Called after each step finished. Args: ds_run_context (RunContext): Include some information of the pipeline. """
def create_runtime_obj(self): """ Creates a runtime (C++) object from the callback methods defined by the user. Returns: _c_dataengine.PyDSCallback. """ c_cb = PyDSCallback(self.step_size) at_least_one = False if self.__class__.ds_begin != DSCallback.ds_begin: c_cb.set_begin(self.ds_begin) at_least_one = True if self.__class__.ds_epoch_begin != DSCallback.ds_epoch_begin: c_cb.set_epoch_begin(self.ds_epoch_begin) at_least_one = True if self.__class__.ds_epoch_end != DSCallback.ds_epoch_end: c_cb.set_epoch_end(self.ds_epoch_end) at_least_one = True if self.__class__.ds_step_begin != DSCallback.ds_step_begin: c_cb.set_step_begin(self.ds_step_begin) at_least_one = True if self.__class__.ds_step_end != DSCallback.ds_step_end: c_cb.set_step_end(self.ds_step_end) at_least_one = True if not at_least_one: raise AttributeError( "Inheriting Callback class without overriding any methods, check the usage of user defined Callback.") return c_cb
[docs]class WaitedDSCallback(Callback, DSCallback): """ Abstract base class used to build a dataset callback class that is synchronized with the training callback. This class can be used to execute a user defined logic right after the previous step or epoch. For example, one augmentation needs the loss from the previous trained epoch to update some of its parameters. Args: step_size (int, optional): The number of rows in each step. Usually the step size will be equal to the batch size (Default=1). Examples: >>> import mindspore.nn as nn >>> from mindspore.dataset import WaitedDSCallback >>> from mindspore import context >>> from mindspore.train import Model >>> from mindspore.train.callback import Callback >>> >>> context.set_context(mode=context.GRAPH_MODE, device_target="CPU") >>> >>> # custom callback class for data synchronization in data pipeline >>> class MyWaitedCallback(WaitedDSCallback): ... def __init__(self, events, step_size=1): ... super().__init__(step_size) ... self.events = events ... ... # callback method to be executed by data pipeline before the epoch starts ... def sync_epoch_begin(self, train_run_context, ds_run_context): ... event = f"ds_epoch_begin_{ds_run_context.cur_epoch_num}_{ds_run_context.cur_step_num}" ... self.events.append(event) ... ... # callback method to be executed by data pipeline before the step starts ... def sync_step_begin(self, train_run_context, ds_run_context): ... event = f"ds_step_begin_{ds_run_context.cur_epoch_num}_{ds_run_context.cur_step_num}" ... self.events.append(event) >>> >>> # custom callback class for data synchronization in network training >>> class MyMSCallback(Callback): ... def __init__(self, events): ... self.events = events ... ... # callback method to be executed by network training after the epoch ends ... def epoch_end(self, run_context): ... cb_params = run_context.original_args() ... event = f"ms_epoch_end_{cb_params.cur_epoch_num}_{cb_params.cur_step_num}" ... self.events.append(event) ... ... # callback method to be executed by network training after the step ends ... def step_end(self, run_context): ... cb_params = run_context.original_args() ... event = f"ms_step_end_{cb_params.cur_epoch_num}_{cb_params.cur_step_num}" ... self.events.append(event) >>> >>> # custom network >>> class Net(nn.Cell): ... def construct(self, x, y): ... return x >>> >>> # define a parameter that needs to be synchronized between data pipeline and network training >>> events = [] >>> >>> # define callback classes of data pipeline and netwok training >>> my_cb1 = MyWaitedCallback(events, 1) >>> my_cb2 = MyMSCallback(events) >>> arr = [1, 2, 3, 4] >>> >>> # construct data pipeline >>> data = ds.NumpySlicesDataset((arr, arr), column_names=["c1", "c2"], shuffle=False) >>> # map the data callback object into the pipeline >>> data = data.map(operations=(lambda x: x), callbacks=my_cb1) >>> >>> net = Net() >>> model = Model(net) >>> >>> # add the data and network callback objects to the model training callback list >>> model.train(2, data, dataset_sink_mode=False, callbacks=[my_cb2, my_cb1]) """ def __init__(self, step_size=1): super().__init__() self.step_size = step_size self.step_event = threading.Event() self.step_run_context = None self.epoch_event = threading.Event() self.epoch_run_context = None self.training_ended = False
[docs] def sync_epoch_begin(self, train_run_context, ds_run_context): """ Called before a new dataset epoch is started and after the previous training epoch is ended. Args: train_run_context: Include some information of the model with feedback from the previous epoch. ds_run_context: Include some information of the dataset pipeline. """
[docs] def sync_step_begin(self, train_run_context, ds_run_context): """ Called before a new dataset step is started and after the previous training step is ended. Args: train_run_context: Include some information of the model with feedback from the previous step. ds_run_context: Include some information of the dataset pipeline. """
def epoch_end(self, run_context): """ Internal method, do not call/override. Defines epoch_end of Callback to release the wait in ds_epoch_begin. Args: run_context: Include some information of the model. """ self.epoch_run_context = run_context self.epoch_event.set() def ds_epoch_begin(self, ds_run_context): """ Internal method, do not call/override. Defines ds_epoch_begin of DSCallback to wait for MS epoch_end callback. Args: ds_run_context: Include some information of the pipeline. """ if ds_run_context.cur_epoch_num > 1: if not self.training_ended: success = self.epoch_event.wait(timeout=ds.config.get_callback_timeout()) self.epoch_event.clear() if not success: raise RuntimeError(f"ds_epoch_begin timed out after {ds.config.get_callback_timeout()} second(s).") # by the time this thread wakes up, self.epoch_run_context is already available self.sync_epoch_begin(self.epoch_run_context, ds_run_context) def step_end(self, run_context): """ Internal method, do not call/override. Defines step_end of Callback to release the wait in ds_step_begin. Args: run_context: Include some information of the model. """ self.step_run_context = run_context self.step_event.set() def ds_step_begin(self, ds_run_context): """ Internal method, do not call/override. Defines ds_step_begin of DSCallback to wait for MS step_end callback. Args: ds_run_context: Include some information of the pipeline. """ if ds_run_context.cur_step_num > self.step_size: if not self.training_ended: success = self.step_event.wait(timeout=ds.config.get_callback_timeout()) self.step_event.clear() if not success: raise RuntimeError(f"ds_step_begin timed out after {ds.config.get_callback_timeout()} second(s).") # by the time this thread wakes up, self.epoch_run_context is already available self.sync_step_begin(self.step_run_context, ds_run_context) def create_runtime_obj(self): """ Creates a runtime (C++) object from the callback methods defined by the user. This method is internal. Returns: _c_dataengine.PyDSCallback. """ c_cb = PyDSCallback(self.step_size) at_least_one = False if self.__class__.sync_step_begin != WaitedDSCallback.sync_step_begin: c_cb.set_step_begin(self.ds_step_begin) at_least_one = True if self.__class__.sync_epoch_begin != WaitedDSCallback.sync_epoch_begin: c_cb.set_epoch_begin(self.ds_epoch_begin) at_least_one = True if not at_least_one: raise AttributeError( "Inheriting Callback class without overriding any methods, check the usage of user defined Callback.") return c_cb def end(self, run_context): """ Internal method, release the wait if training is ended. Args: run_context: Include some information of the model. """ self.epoch_end(run_context) self.step_end(run_context) self.training_ended = True