文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.UnsortedSegmentMin

class mindspore.ops.UnsortedSegmentMin[source]

Computes the minimum of a tensor along segments.

The following figure shows the calculation process of UnsortedSegmentMin:

../../_images/UnsortedSegmentMin.png
 output i=minj data [j]

where min over tuples j... such that segmentids[j...]==i.

Note

If the segment_id i is absent in the segment_ids, then output[i] will be filled with the maximum value of the input_x’s type. The segment_ids must be non-negative tensor.

Inputs:
  • input_x (Tensor) - The shape is (x1,x2,...,xR). The data type must be float16, float32 or int32.

  • segment_ids (Tensor) - A 1-D tensor whose shape is (x1), the value must be non-negative tensor. The data type must be int32.

  • num_segments (int) - The value specifies the number of distinct segment_ids.

Outputs:

Tensor, set the number of num_segments as N, the shape is (N,x2,...,xR).

Raises
  • TypeError – If num_segments is not an int.

  • ValueError – If length of shape of segment_ids is not equal to 1.

Supported Platforms:

Ascend GPU

Examples

>>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32))
>>> segment_ids = Tensor(np.array([0, 1, 1]).astype(np.int32))
>>> num_segments = 2
>>> unsorted_segment_min = ops.UnsortedSegmentMin()
>>> output = unsorted_segment_min(input_x, segment_ids, num_segments)
>>> print(output)
[[1. 2. 3.]
 [4. 2. 1.]]