文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.Tile

class mindspore.ops.Tile[source]

Replicates a tensor with given multiples times.

Creates a new tensor by replicating input_x multiples times. The i’th dimension of output tensor has input_x.shape(i) * multiples[i] elements, and the values of input_x are replicated multiples[i] times along the i’th dimension.

Note

The length of multiples must be greater or equal to the length of dimension in input_x.

Inputs:
  • input_x (Tensor) - 1-D or higher Tensor. Set the shape of input tensor as (x1,x2,...,xS).

  • multiples (tuple[int]) - The input tuple is constructed by multiple integers, i.e., (y1,y2,...,yS). The length of multiples cannot be smaller than the length of the shape of input_x. Only constant value is allowed.

Outputs:

Tensor, has the same data type as the input_x.

  • If the length of multiples is the same as the length of shape of input_x, then the shape of their corresponding positions can be multiplied, and the shape of Outputs is (x1y1,x2y2,...,xSyR).

  • If the length of multiples is larger than the length of shape of input_x, fill in multiple 1 in the length of the shape of input_x until their lengths are consistent. Such as set the shape of input_x as (1,...,x1,x2,...,xS), then the shape of their corresponding positions can be multiplied, and the shape of Outputs is (1y1,...,xSyR).

Raises
  • TypeError – If multiples is not a tuple or its elements are not all int.

  • ValueError – If the elements of multiples are not all greater than 0.

  • ValueError – If the length of multiples are smaller than the length of dimension in input_x.

Supported Platforms:

Ascend GPU CPU

Examples

>>> tile = ops.Tile()
>>> input_x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.float32)
>>> multiples = (2, 3)
>>> output = tile(input_x, multiples)
>>> print(output)
[[1.  2.  1.  2.  1.  2.]
 [3.  4.  3.  4.  3.  4.]
 [1.  2.  1.  2.  1.  2.]
 [3.  4.  3.  4.  3.  4.]]
>>> multiples = (2, 3, 2)
>>> output = tile(input_x, multiples)
>>> print(output)
[[[1. 2. 1. 2.]
  [3. 4. 3. 4.]
  [1. 2. 1. 2.]
  [3. 4. 3. 4.]
  [1. 2. 1. 2.]
  [3. 4. 3. 4.]]
 [[1. 2. 1. 2.]
  [3. 4. 3. 4.]
  [1. 2. 1. 2.]
  [3. 4. 3. 4.]
  [1. 2. 1. 2.]
  [3. 4. 3. 4.]]]