mindspore.ops.SparseApplyFtrlV2
- class mindspore.ops.SparseApplyFtrlV2(lr, l1, l2, l2_shrinkage, lr_power, use_locking=False)[source]
Updates relevant entries according to the FTRL-proximal scheme. This class has one more attribute, named l2_shrinkage, than class SparseApplyFtrl.
All of inputs except indices comply with the implicit type conversion rules to make the data types consistent. If they have different data types, lower priority data type will be converted to relatively highest priority data type. RuntimeError exception will be thrown when the data type conversion of Parameter is required.
- Parameters
lr (float) – The learning rate value, must be positive.
l1 (float) – l1 regularization strength, must be greater than or equal to zero.
l2 (float) – l2 regularization strength, must be greater than or equal to zero.
l2_shrinkage (float) – L2 shrinkage regularization.
lr_power (float) – Learning rate power controls how the learning rate decreases during training, must be less than or equal to zero. Use fixed learning rate if lr_power is zero.
use_locking (bool) – If True, the var and accumulation tensors will be protected from being updated. Default: False.
- Inputs:
var (Parameter) - The variable to be updated. The data type must be float16 or float32. The shape is \((N, *)\) where \(*\) means, any number of additional dimensions.
accum (Parameter) - The accumulation to be updated, must be same data type and shape as var.
linear (Parameter) - the linear coefficient to be updated, must be same data type and shape as var.
grad (Tensor) - A tensor of the same type as var and grad.shape[1:] = var.shape[1:] if var.shape > 1.
indices (Tensor) - A vector of indices in the first dimension of var and accum. The type must be int32 and indices.shape[0] = grad.shape[0].
- Outputs:
Tuple of 3 Tensor, the updated parameters.
var (Tensor) - Tensor, has the same shape and data type as var.
accum (Tensor) - Tensor, has the same shape and data type as accum.
linear (Tensor) - Tensor, has the same shape and data type as linear.
- Raises
- Supported Platforms:
Ascend
Examples
>>> class SparseApplyFtrlV2Net(nn.Cell): ... def __init__(self): ... super(SparseApplyFtrlV2Net, self).__init__() ... self.sparse_apply_ftrl_v2 = ops.SparseApplyFtrlV2(lr=0.01, l1=0.0, l2=0.0, ... l2_shrinkage=0.0, lr_power=-0.5) ... self.var = Parameter(Tensor(np.array([[0.2, 0.3]]).astype(np.float32)), name="var") ... self.accum = Parameter(Tensor(np.array([[0.5, 0.9]]).astype(np.float32)), name="accum") ... self.linear = Parameter(Tensor(np.array([[0.7, 0.5]]).astype(np.float32)), name="linear") ... ... def construct(self, grad, indices): ... out = self.sparse_apply_ftrl_v2(self.var, self.accum, self.linear, grad, indices) ... return out ... >>> net = SparseApplyFtrlV2Net() >>> grad = Tensor(np.array([[0.8, 0.5]]).astype(np.float32)) >>> indices = Tensor(np.ones([1]), mindspore.int32) >>> output = net(grad, indices) >>> print(output) (Tensor(shape=[1, 2], dtype=Float32, value= [[ 2.00000003e-01, 3.00000012e-01]]), Tensor(shape=[1, 2], dtype=Float32, value= [[ 5.00000000e-01, 8.99999976e-01]]), Tensor(shape=[1, 2], dtype=Float32, value= [[ 6.99999988e-01, 5.00000000e-01]]))