文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.ReduceAll

class mindspore.ops.ReduceAll(keep_dims=False)[source]

Reduces a dimension of a tensor by the “logicalAND” of all elements in the dimension, by Default. And also can reduces a dimension of x along the axis. Determine whether the dimensions of the output and input are the same by controlling keep_dims.

Parameters

keep_dims (bool) – If true, keep these reduced dimensions and the length is 1. If false, don’t keep these dimensions. Default : False, don’t keep these reduced dimensions.

Inputs:
  • x (Tensor[bool]) - The input tensor. The dtype of the tensor to be reduced is bool. (N,) where means, any number of additional dimensions, its rank should less than 8.

  • axis (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions. Only constant value is allowed. Must be in the range [-rank(x), rank(x)).

Outputs:

Tensor, the dtype is bool.

  • If axis is (), and keep_dims is False, the output is a 0-D tensor representing the “logical and” of all elements in the input tensor.

  • If axis is int, set as 2, and keep_dims is False, the shape of output is (x1,x3,...,xR).

  • If axis is tuple(int), set as (2, 3), and keep_dims is False, the shape of output is (x1,x4,...,xR).

Raises
  • TypeError – If keep_dims is not a bool.

  • TypeError – If x is not a Tensor.

  • ValueError – If axis is not one of the following: int, tuple or list.

Supported Platforms:

Ascend GPU CPU

Examples

>>> x = Tensor(np.array([[True, False], [True, True]]))
>>> op = ops.ReduceAll(keep_dims=True)
>>> # case 1: Reduces a dimension by averaging all elements in the dimension.
>>> output = op(x)
>>> print(output)
[[False]]
>>> print(output.shape)
(1, 1)
>>> # case 2: Reduces a dimension along axis 0.
>>> output = op(x, 0)
>>> print(output)
[[ True False]]
>>> # case 3: Reduces a dimension along axis 1.
>>> output = op(x, 1)
>>> print(output)
[[False]
[ True]]