mindspore.ops.LayerNorm
- class mindspore.ops.LayerNorm(begin_norm_axis=1, begin_params_axis=1, epsilon=1e-7)[source]
Applies the Layer Normalization to the input tensor.
This operator will normalize the input tensor on given axis. LayerNorm is described in the paper Layer Normalization.
where
is scale, is bias, is epsilon.- Parameters
begin_norm_axis (int) – The begin axis of the input_x to apply LayerNorm, the value must be in [-1, rank(input)). Default: 1.
begin_params_axis (int) – The begin axis of the parameter input (gamma, beta) to apply LayerNorm, the value must be in [-1, rank(input)). Default: 1.
epsilon (float) – A value added to the denominator for numerical stability. Default: 1e-7.
- Inputs:
input_x (Tensor) - Tensor of shape
. The input of LayerNorm.gamma (Tensor) - Tensor of shape
. The learnable parameter gamma as the scale on norm.beta (Tensor) - Tensor of shape
. The learnable parameter beta as the scale on norm.
- Outputs:
tuple[Tensor], tuple of 3 tensors, the normalized input and the updated parameters.
output_x (Tensor) - The normalized input, has the same type and shape as the input_x. The shape is
.mean (Tensor) - Tensor of shape
.variance (Tensor) - Tensor of shape
.
- Raises
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> input_x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32) >>> gamma = Tensor(np.ones([3]), mindspore.float32) >>> beta = Tensor(np.ones([3]), mindspore.float32) >>> layer_norm = ops.LayerNorm() >>> output, mean, variance = layer_norm(input_x, gamma, beta) >>> print(output) [[-0.2247448 1. 2.2247448] [-0.2247448 1. 2.2247448]] >>> print(mean) [[2.] [2.]] >>> print(variance) [[0.6666667] [0.6666667]]