mindspore.ops.DynamicGRUV2
- class mindspore.ops.DynamicGRUV2(direction='UNIDIRECTIONAL', cell_depth=1, keep_prob=1.0, cell_clip=- 1.0, num_proj=0, time_major=True, activation='tanh', gate_order='rzh', reset_after=True, is_training=True)[source]
Applies a single-layer gated recurrent unit (GRU) to an input sequence.
where
is the hidden state at time t+1, is the input at time t+1, is the hidden state of the layer at time t or the initial hidden state at time 0, and , , are the reset, update, and new gates, respectively. , are the weight parameter and the deviation parameter respectively. is the sigmoid function, and is the Hadamard product.- Parameters
direction (str) – A string identifying the direction in the op. Default: ‘UNIDIRECTIONAL’. Only ‘UNIDIRECTIONAL’ is currently supported.
cell_depth (int) – An integer identifying the cell depth in the op. Default: 1.
keep_prob (float) – A float identifying the keep prob in the op. Default: 1.0.
cell_clip (float) – A float identifying the cell clip in the op. Default: -1.0.
num_proj (int) – An integer identifying the num proj in the op. Default: 0.
time_major (bool) – A bool identifying the time major in the op. Default: True.
activation (str) – A string identifying the type of activation function in the op. Default: ‘tanh’. Only ‘tanh’ is currently supported.
gate_order (str) – A string identifying the gate order in weight and bias. Default: ‘rzh. ‘zrh’ is another option.
reset_after (bool) – A bool identifying whether to apply reset gate after matrix multiplication. Default: True.
is_training (bool) – A bool identifying is training in the op. Default: True.
- Inputs:
x (Tensor) - Current words. Tensor of shape
. The data type must be float16.weight_input (Tensor) - Input-hidden weight. Tensor of shape
. The data type must be float16.weight_hidden (Tensor) - Hidden-hidden weight. Tensor of shape
. The data type must be float16.init_h (Tensor) - Hidden state of initial time. Tensor of shape
. The data type must be float16 or float32.bias_input (Tensor) - Input-hidden bias. Tensor of shape
, or None. Has the same data type with input init_h.bias_hidden (Tensor) - Hidden-hidden bias. Tensor of shape
, or None. Has the same data type with input init_h.seq_length (Tensor) - The length of each batch. Tensor of shape
. Only None is currently supported.
- Outputs:
y (Tensor) - A Tensor of shape:
y_shape =
: If num_proj > 0,y_shape =
: If num_proj = 0.
Has the same data type with input bias_type.
output_h (Tensor) - A Tensor of shape
. Has the same data type with input bias_type.update (Tensor) - A Tensor of shape
. Has the same data type with input bias_type.reset (Tensor) - A Tensor of shape
. Has the same data type with input bias_type.new (Tensor) - A Tensor of shape
. Has the same data type with input bias_type.hidden_new (Tensor) - A Tensor of shape
. Has the same data type with input bias_type.
A note about the bias_type:
If bias_input and bias_hidden both are None, bias_type is data type of init_h.
If bias_input is not None, bias_type is the data type of bias_input.
If bias_input is None and bias_hidden is not None, bias_type is the data type of bias_hidden.
- Raises
TypeError – If direction, activation or gate_order is not a str.
TypeError – If cell_depth or num_proj is not an int.
TypeError – If keep_prob or cell_clip is not a float.
TypeError – If time_major, reset_after or is_training is not a bool.
TypeError – If x, weight_input, weight_hidden, bias_input, bias_hidden, seq_length or ini_h is not a Tensor.
TypeError – If dtype of x, weight_input or weight_hidden is not float16.
TypeError – If dtype of init_h is neither float16 nor float32.
- Supported Platforms:
Ascend
Examples
>>> x = Tensor(np.random.rand(2, 8, 64).astype(np.float16)) >>> weight_i = Tensor(np.random.rand(64, 48).astype(np.float16)) >>> weight_h = Tensor(np.random.rand(16, 48).astype(np.float16)) >>> bias_i = Tensor(np.random.rand(48).astype(np.float16)) >>> bias_h = Tensor(np.random.rand(48).astype(np.float16)) >>> init_h = Tensor(np.random.rand(8, 16).astype(np.float16)) >>> dynamic_gru_v2 = ops.DynamicGRUV2() >>> output = dynamic_gru_v2(x, weight_i, weight_h, bias_i, bias_h, None, init_h) >>> print(output[0].shape) (2, 8, 16)