文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.numpy.cov

mindspore.numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None, dtype=None)[source]

Estimates a covariance matrix, given data and weights.

Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, X=[x1,x2,...xN]T, then the covariance matrix element Cij is the covariance of xi and xj. The element Cii is the variance of xi.

Note

fweights and aweights must be all positive, in Numpy if negative values are detected, a value error will be raised, in MindSpore we converts all values to positive instead.

Parameters
  • m (Union[Tensor, list, tuple]) – A 1-D or 2-D tensor containing multiple variables and observations. Each row of m represents a variable, and each column represents a single observation of all those variables. Also see rowvar below.

  • y (Union[Tensor, list, tuple], optional) – An additional set of variables and observations. y has the same form as that of m, default is None.

  • rowvar (bool, optional) – If rowvar is True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations.

  • bias (bool, optional) – Default Normalization (False) is by (N1), where N is the number of observations given (unbiased estimate). If bias is True, then Normalization is by N. These values can be overridden by using the keyword ddof.

  • ddof (int, optional) – If not None, the default value implied by bias is overridden. Note that ddof=1 will return the unbiased estimate, even if both fweights and aweights are specified, and ddof=0 will return the simple average. See the notes for the details. The default value is None.

  • fweights (Union[Tensor, list, tuple], optional) – 1-D tensor of integer frequency weights; the number of times each observation vector should be repeated. The default value is None.

  • aweights (Union[Tensor, list, tuple], optional) – 1-D tensor of observation vector weights. These relative weights are typically larger for observations considered more important and smaller for observations considered less important. If ddof=0 the tensor of weights can be used to assign probabilities to observation vectors. The default value is None.

  • dtype (Union[mindspore.dtype, str], optional) – Data-type of the result. By default, the return data-type will have mstype.float32 precision.

Returns

Tensor, the covariance matrix of the variables.

Raises
  • TypeError – if the inputs have types not specified above.

  • ValueError – if m and y have wrong dimensions.

  • RuntimeError – if aweights and fweights have dimensions > 2.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore.numpy as np
>>> output = np.cov([[2., 3., 4., 5.], [0., 2., 3., 4.], [7., 8., 9., 10.]])
>>> print(output)
[[1.6666666 2.1666667 1.6666666]
[2.1666667 2.9166667 2.1666667]
[1.6666666 2.1666667 1.6666666]]