文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.LSTM

class mindspore.nn.LSTM(input_size, hidden_size, num_layers=1, has_bias=True, batch_first=False, dropout=0, bidirectional=False)[source]

Stacked LSTM (Long Short-Term Memory) layers.

Apply LSTM layer to the input.

There are two pipelines connecting two consecutive cells in a LSTM model; one is cell state pipeline and the other is hidden state pipeline. Denote two consecutive time nodes as t1 and t. Given an input xt at time t, an hidden state ht1 and an cell state ct1 of the layer at time t1, the cell state and hidden state at time t is computed using an gating mechanism. Input gate it is designed to protect the cell from perturbation by irrelevant inputs. Forget gate ft affords protection of the cell by forgetting some information in the past, which is stored in ht1. Output gate ot protects other units from perturbation by currently irrelevant memory contents. Candidate cell state c~t is calculated with the current input, on which the input gate will be applied. Finally, current cell state ct and hidden state ht are computed with the calculated gates and cell states. The complete formulation is as follows.

it=σ(Wixxt+bix+Wihh(t1)+bih)ft=σ(Wfxxt+bfx+Wfhh(t1)+bfh)c~t=tanh(Wcxxt+bcx+Wchh(t1)+bch)ot=σ(Woxxt+box+Wohh(t1)+boh)ct=ftc(t1)+itc~tht=ottanh(ct)

Here σ is the sigmoid function, and is the Hadamard product. W,b are learnable weights between the output and the input in the formula. For instance, Wix,bix are the weight and bias used to transform from input x to i. Details can be found in paper LONG SHORT-TERM MEMORY and Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling.

Parameters
  • input_size (int) – Number of features of input.

  • hidden_size (int) – Number of features of hidden layer.

  • num_layers (int) – Number of layers of stacked LSTM . Default: 1.

  • has_bias (bool) – Whether the cell has bias b_ih and b_hh. Default: True.

  • batch_first (bool) – Specifies whether the first dimension of input x is batch_size. Default: False.

  • dropout (float, int) – If not 0, append Dropout layer on the outputs of each LSTM layer except the last layer. Default 0. The range of dropout is [0.0, 1.0].

  • bidirectional (bool) – Specifies whether it is a bidirectional LSTM. Default: False.

Inputs:
  • x (Tensor) - Tensor of shape (seq_len, batch_size, input_size) or (batch_size, seq_len, input_size).

  • hx (tuple) - A tuple of two Tensors (h_0, c_0) both of data type mindspore.float32 or mindspore.float16 and shape (num_directions * num_layers, batch_size, hidden_size). Data type of hx must be the same as x.

Outputs:

Tuple, a tuple contains (output, (h_n, c_n)).

  • output (Tensor) - Tensor of shape (seq_len, batch_size, num_directions * hidden_size).

  • hx_n (tuple) - A tuple of two Tensor (h_n, c_n) both of shape (num_directions * num_layers, batch_size, hidden_size).

Raises
  • TypeError – If input_size, hidden_size or num_layers is not an int.

  • TypeError – If has_bias, batch_first or bidirectional is not a bool.

  • TypeError – If dropout is neither a float nor an int.

  • ValueError – If dropout is not in range [0.0, 1.0].

Supported Platforms:

Ascend GPU

Examples

>>> net = nn.LSTM(10, 16, 2, has_bias=True, batch_first=True, bidirectional=False)
>>> x = Tensor(np.ones([3, 5, 10]).astype(np.float32))
>>> h0 = Tensor(np.ones([1 * 2, 3, 16]).astype(np.float32))
>>> c0 = Tensor(np.ones([1 * 2, 3, 16]).astype(np.float32))
>>> output, (hn, cn) = net(x, (h0, c0))
>>> print(output.shape)
(3, 5, 16)