文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.ConfusionMatrixMetric

class mindspore.nn.ConfusionMatrixMetric(skip_channel=True, metric_name='sensitivity', calculation_method=False, decrease='mean')[source]

The performance matrix of measurement classification model is the model whose output is binary or multi class. The correlation measure of confusion matrix was calculated from the full-scale tensor, and the average values of batch, class channel and iteration were collected. This function supports the calculation of all measures described below: the metric name in parameter metric_name.

If you want to use confusion matrix to calculate, such as ‘PPV’, ‘TPR’, ‘TNR’, use this class. If you only want to calculate confusion matrix, please use ‘mindspore.metrics.ConfusionMatrix’.

Parameters
  • skip_channel (bool) – Whether to skip the measurement calculation on the first channel of the predicted output. Default: True.

  • metric_name (str) – The names of indicators are in the following range. Of course, you can also set the industry common aliases for these indicators. Choose from: [“sensitivity”, “specificity”, “precision”, “negative predictive value”, “miss rate”, “fall out”, “false discovery rate”, “false omission rate”, “prevalence threshold”, “threat score”, “accuracy”, “balanced accuracy”, “f1 score”, “matthews correlation coefficient”, “fowlkes mallows index”, “informedness”, “markedness”].

  • calculation_method (bool) – If true, the measurement for each sample will be calculated first. If not, the confusion matrix of all samples will be accumulated first. As for classification task, ‘calculation_method’ should be False. Default: False.

  • decrease (str) – Define the mode to reduce the calculation result of one batch of data. Decrease is used only if calculation_method is True. Default: “mean”. Choose from: [“none”, “mean”, “sum”, “mean_batch”, “sum_batch”, “mean_channel”, “sum_channel”].

Supported Platforms:

Ascend GPU CPU

Examples

>>> metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tpr",
...                                calculation_method=False, decrease="mean")
>>> metric.clear()
>>> x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
>>> y = Tensor(np.array([[[0], [1]], [[0], [1]]]))
>>> metric.update(x, y)
>>> x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
>>> y = Tensor(np.array([[[0], [1]], [[1], [0]]]))
>>> avg_output = metric.eval()
>>> print(avg_output)
[0.5]
clear()[source]

Clears the internal evaluation result.

eval()[source]

Computes confusion matrix metric.

Returns

ndarray, the computed result.

update(*inputs)[source]

Update state with predictions and targets.

inputs:

Input y_pred and y. y_pred and y are a Tensor, a list or an array.

  • y_pred (ndarray) - Input data to compute. It must be one-hot format and first dim is batch. The shape of y_pred is (N,C,...) or (N,...). As for classification tasks, y_pred should has the shape [BN] where N is larger than 1. As for segmentation tasks, the shape should be [BNHW] or [BNHWD].

  • y (ndarray) - Compute the true value of the measure. It must be one-hot format and first dim is batch. The shape of y is (N,C,...).

Raises

ValueError – If the number of the inputs is not 2.