mindspore.dataset.vision.c_transforms.RandomResizedCrop
- class mindspore.dataset.vision.c_transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Inter.BILINEAR, max_attempts=10)[source]
Crop the input image to a random size and aspect ratio. This operator will crop the input image randomly, and resize the cropped image using a selected interpolation mode.
Note
If the input image is more than one, then make sure that the image size is the same.
- Parameters
size (Union[int, sequence]) – The output size of the resized image. If size is an integer, a square crop of size (size, size) is returned. If size is a sequence of length 2, it should be (height, width).
scale (list, tuple, optional) – Range [min, max) of respective size of the original size to be cropped (default=(0.08, 1.0)).
ratio (list, tuple, optional) – Range [min, max) of aspect ratio to be cropped (default=(3. / 4., 4. / 3.)).
interpolation (Inter mode, optional) –
Image interpolation mode for resize operator (default=Inter.BILINEAR). It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.PILCUBIC].
Inter.BILINEAR, means interpolation method is bilinear interpolation.
Inter.NEAREST, means interpolation method is nearest-neighbor interpolation.
Inter.BICUBIC, means interpolation method is bicubic interpolation.
Inter.AREA, means interpolation method is pixel area interpolation.
Inter.PILCUBIC, means interpolation method is bicubic interpolation like implemented in pillow, input should be in 3 channels format.
max_attempts (int, optional) – The maximum number of attempts to propose a valid crop_area (default=10). If exceeded, fall back to use center_crop instead.
Examples
>>> from mindspore.dataset.vision import Inter >>> decode_op = c_vision.Decode() >>> resize_crop_op = c_vision.RandomResizedCrop(size=(50, 75), scale=(0.25, 0.5), ... interpolation=Inter.BILINEAR) >>> transforms_list = [decode_op, resize_crop_op] >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns=["image"])